Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Help: xtabond and sargan test

    Hello! I am new to Stata list and need some guidance.
    I ran the xtreg, fe model to test the effect of my IV on the DV. I realized the data had autocorrelation (Wooldridge test). So, I conducted xtabond. The artests(2) (estat xtabond) were correct (order 1: significant and order 2: non-significant) only if I take lags(2). Hence, I took 2 lags. I followed it with the Sargan test (estat sargan). The result was significant.

    xtabond equation:
    xtabond std_f_sh_first_msa10_mc std_lag_2index_nsa std_ln_nsize_1yr std_outward_orientation std_hhi_n_pat_mainclass std_degree_centralization std_ln_emp_hightech std_pc_annual_payment_hightech y_1-y_17, lags(1) artests(2)


    Arellano–Bond dynamic panel-data estimation Number of obs = 4,581
    Group variable: MSAstate Number of groups = 424
    Time variable: year
    Obs per group:
    min = 1
    avg = 10.80425
    max = 13

    Number of instruments = 125 Wald chi2(22) = 610.54
    Prob > chi2 = 0.0000
    One-step results
    ------------------------------------------------------------------------------------------------
    std_f_sh_first_msa10_mc | Coefficient Std. err. z P>|z| [95% conf. interval]
    -------------------------------+----------------------------------------------------------------
    std_f_sh_first_msa10_mc |
    L1. | .1652581 .0226839 7.29 0.000 .1207984 .2097177
    L2. | .1705293 .0191928 8.89 0.000 .1329122 .2081464
    |
    std_lag_2index_nsa | -.0657571 .020347 -3.23 0.001 -.1056365 -.0258777
    std_ln_nsize_1yr | .0924772 .0782206 1.18 0.237 -.0608324 .2457867
    std_outward_orientation | .0244185 .009956 2.45 0.014 .0049052 .0439319
    std_hhi_n_pat_mainclass | .0183985 .0151115 1.22 0.223 -.0112195 .0480165
    std_degree_centralization | .0376602 .0198398 1.90 0.058 -.001225 .0765455
    std_ln_emp_hightech | .0339718 .0421255 0.81 0.420 -.0485926 .1165363
    std_pc_annual_payment_hightech | .0476782 .0289956 1.64 0.100 -.0091521 .1045086
    y_3 | .2831649 .0694936 4.07 0.000 .14696 .4193698
    y_4 | .2823377 .0649208 4.35 0.000 .1550952 .4095802
    y_5 | .2957124 .0609644 4.85 0.000 .1762243 .4152004
    y_6 | .3263206 .0574517 5.68 0.000 .2137173 .4389239
    y_7 | .3015834 .0536802 5.62 0.000 .1963721 .4067946
    y_8 | .3749698 .050919 7.36 0.000 .2751703 .4747693
    y_9 | .386725 .0511317 7.56 0.000 .2865087 .4869414
    y_10 | .3402882 .0511256 6.66 0.000 .2400839 .4404926
    y_11 | .2469398 .0488287 5.06 0.000 .1512373 .3426422
    y_12 | .1356522 .0466845 2.91 0.004 .0441523 .2271522
    y_13 | .0971989 .0462503 2.10 0.036 .00655 .1878479
    y_14 | -.0041391 .0449296 -0.09 0.927 -.0921994 .0839212
    y_15 | -.0111178 .0377203 -0.29 0.768 -.0850483 .0628127
    _cons | -.3968184 .0417313 -9.51 0.000 -.4786103 -.3150266
    ------------------------------------------------------------------------------------------------
    Instruments for differenced equation
    GMM-type: L(2/.).std_f_sh_first_msa10_mc
    Standard: D.std_lag_2index_nsa D.std_ln_nsize_1yr D.std_outward_orientation
    D.std_hhi_n_pat_mainclass D.std_degree_centralization D.std_ln_emp_hightech
    D.std_pc_annual_payment_hightech D.y_3 D.y_4 D.y_5 D.y_6 D.y_7 D.y_8 D.y_9
    D.y_10 D.y_11 D.y_12 D.y_13 D.y_14 D.y_15
    Instruments for level equation
    Standard: _cons

    Sargan test
    estat sargan
    Sargan test of overidentifying restrictions
    H0: Overidentifying restrictions are valid

    chi2(102) = 862.8817
    Prob > chi2 = 0.0000

    Please help:
    1. The
    Sargan test is significant. Does it mean the instrument is invalid? What can I do to fix this issue? I learned that it may be solved if I reduce the number of instruments or collapse them (not sure how). The analysis shows that the number of instruments is 125 - I am not sure how STATA creates them, so, I don't know how to reduce their number. Even if I remove all controls and year dummy, the number of instruments was 107 and the Sargan test was significant.

    xtabond std_f_sh_first_msa10_mc std_lag_2index_nsa, lags(1) artests(2)

    Arellano–Bond dynamic panel-data estimation Number of obs = 5,717
    Group variable: MSAstate Number of groups = 439
    Time variable: year
    Obs per group:
    min = 3
    avg = 13.02278
    max = 14

    Number of instruments = 107 Wald chi2(2) = 498.65
    Prob > chi2 = 0.0000
    One-step results
    -----------------------------------------------------------------------------------------
    std_f_sh_first_msa10_mc | Coefficient Std. err. z P>|z| [95% conf. interval]
    ------------------------+----------------------------------------------------------------
    std_f_sh_first_msa10_mc |
    L1. | .3600455 .0166373 21.64 0.000 .327437 .3926541
    |
    std_lag_2index_nsa | -.0562578 .0177317 -3.17 0.002 -.0910113 -.0215044
    _cons | -.0520827 .0081361 -6.40 0.000 -.0680291 -.0361363
    -----------------------------------------------------------------------------------------
    Instruments for differenced equation
    GMM-type: L(2/.).std_f_sh_first_msa10_mc
    Standard: D.std_lag_2index_nsa
    Instruments for level equation
    Standard: _cons

    . estat sargan
    Sargan test of overidentifying restrictions
    H0: Overidentifying restrictions are valid

    chi2(104) = 1281.709
    Prob > chi2 = 0.0000


    2. I ran other equations (with 2 lags of DV) for reliable estimation and addressing autocorrelation (if the xtabond is insufficient as the Sargan test is significant).
    • FE panel regression with Driscoll-Kraay standard errors: xtscc std_f_sh_first_msa10_mc l.std_f_sh_first_msa10_mc l2.std_f_sh_first_msa10_mc std_lag_2index_nsa std_ln_nsize_1yr std_outward_orientation std_hhi_n_pat_mainclass std_degree_centralization std_ln_emp_hightech std_pc_annual_payment_hightech i.year, fe
    • System GMM/Blundell-Bond estimator: xtdpdsys std_f_sh_first_msa10_mc std_lag_2index_nsa std_ln_nsize_1yr std_outward_orientation std_hhi_n_pat_mainclass std_degree_centralization std_ln_emp_hightech std_pc_annual_payment_hightech y_1 y_2 y_3 y_4 y_5 y_6 y_7 y_8 y_9 y_10 y_11 y_12 y_13 y_14 y_15 y_16 y_17, lags(2) artests(2)
    The Sargan test is still significant.
    • FE panel regression with autoregressive errors: xtregar std_f_sh_first_msa10_mc l(1/2).std_f_sh_first_msa10_mc std_lag_2index_nsa std_ln_nsize_1yr std_outward_orientation std_hhi_n_pat_mainclass std_degree_centralization std_ln_emp_hightech std_pc_annual_payment_hightech y_1-y_17, fe
    Are these methods correct and sufficient to deal with the problem of autocorrelation (temporal dependence)? Results in all these analyses support my hypotheses.

    Thank you very much for your kind help!

  • #2
    I recommend that you try to understand the estimators a bit better before continuing with your analysis. It is difficult to give helpful answers at this stage. The following presentation and the references therein might be of help:
    https://www.kripfganz.de/stata/

    Comment


    • #3
      Thank you, Sebastian!

      Comment

      Working...
      X