Hello! I am new to Stata list and need some guidance.
I ran the xtreg, fe model to test the effect of my IV on the DV. I realized the data had autocorrelation (Wooldridge test). So, I conducted xtabond. The artests(2) (estat xtabond) were correct (order 1: significant and order 2: non-significant) only if I take lags(2). Hence, I took 2 lags. I followed it with the Sargan test (estat sargan). The result was significant.
xtabond equation:
xtabond std_f_sh_first_msa10_mc std_lag_2index_nsa std_ln_nsize_1yr std_outward_orientation std_hhi_n_pat_mainclass std_degree_centralization std_ln_emp_hightech std_pc_annual_payment_hightech y_1-y_17, lags(1) artests(2)
Arellano–Bond dynamic panel-data estimation Number of obs = 4,581
Group variable: MSAstate Number of groups = 424
Time variable: year
Obs per group:
min = 1
avg = 10.80425
max = 13
Number of instruments = 125 Wald chi2(22) = 610.54
Prob > chi2 = 0.0000
One-step results
------------------------------------------------------------------------------------------------
std_f_sh_first_msa10_mc | Coefficient Std. err. z P>|z| [95% conf. interval]
-------------------------------+----------------------------------------------------------------
std_f_sh_first_msa10_mc |
L1. | .1652581 .0226839 7.29 0.000 .1207984 .2097177
L2. | .1705293 .0191928 8.89 0.000 .1329122 .2081464
|
std_lag_2index_nsa | -.0657571 .020347 -3.23 0.001 -.1056365 -.0258777
std_ln_nsize_1yr | .0924772 .0782206 1.18 0.237 -.0608324 .2457867
std_outward_orientation | .0244185 .009956 2.45 0.014 .0049052 .0439319
std_hhi_n_pat_mainclass | .0183985 .0151115 1.22 0.223 -.0112195 .0480165
std_degree_centralization | .0376602 .0198398 1.90 0.058 -.001225 .0765455
std_ln_emp_hightech | .0339718 .0421255 0.81 0.420 -.0485926 .1165363
std_pc_annual_payment_hightech | .0476782 .0289956 1.64 0.100 -.0091521 .1045086
y_3 | .2831649 .0694936 4.07 0.000 .14696 .4193698
y_4 | .2823377 .0649208 4.35 0.000 .1550952 .4095802
y_5 | .2957124 .0609644 4.85 0.000 .1762243 .4152004
y_6 | .3263206 .0574517 5.68 0.000 .2137173 .4389239
y_7 | .3015834 .0536802 5.62 0.000 .1963721 .4067946
y_8 | .3749698 .050919 7.36 0.000 .2751703 .4747693
y_9 | .386725 .0511317 7.56 0.000 .2865087 .4869414
y_10 | .3402882 .0511256 6.66 0.000 .2400839 .4404926
y_11 | .2469398 .0488287 5.06 0.000 .1512373 .3426422
y_12 | .1356522 .0466845 2.91 0.004 .0441523 .2271522
y_13 | .0971989 .0462503 2.10 0.036 .00655 .1878479
y_14 | -.0041391 .0449296 -0.09 0.927 -.0921994 .0839212
y_15 | -.0111178 .0377203 -0.29 0.768 -.0850483 .0628127
_cons | -.3968184 .0417313 -9.51 0.000 -.4786103 -.3150266
------------------------------------------------------------------------------------------------
Instruments for differenced equation
GMM-type: L(2/.).std_f_sh_first_msa10_mc
Standard: D.std_lag_2index_nsa D.std_ln_nsize_1yr D.std_outward_orientation
D.std_hhi_n_pat_mainclass D.std_degree_centralization D.std_ln_emp_hightech
D.std_pc_annual_payment_hightech D.y_3 D.y_4 D.y_5 D.y_6 D.y_7 D.y_8 D.y_9
D.y_10 D.y_11 D.y_12 D.y_13 D.y_14 D.y_15
Instruments for level equation
Standard: _cons
Sargan test
estat sargan
Sargan test of overidentifying restrictions
H0: Overidentifying restrictions are valid
chi2(102) = 862.8817
Prob > chi2 = 0.0000
Please help:
1. The Sargan test is significant. Does it mean the instrument is invalid? What can I do to fix this issue? I learned that it may be solved if I reduce the number of instruments or collapse them (not sure how). The analysis shows that the number of instruments is 125 - I am not sure how STATA creates them, so, I don't know how to reduce their number. Even if I remove all controls and year dummy, the number of instruments was 107 and the Sargan test was significant.
xtabond std_f_sh_first_msa10_mc std_lag_2index_nsa, lags(1) artests(2)
Arellano–Bond dynamic panel-data estimation Number of obs = 5,717
Group variable: MSAstate Number of groups = 439
Time variable: year
Obs per group:
min = 3
avg = 13.02278
max = 14
Number of instruments = 107 Wald chi2(2) = 498.65
Prob > chi2 = 0.0000
One-step results
-----------------------------------------------------------------------------------------
std_f_sh_first_msa10_mc | Coefficient Std. err. z P>|z| [95% conf. interval]
------------------------+----------------------------------------------------------------
std_f_sh_first_msa10_mc |
L1. | .3600455 .0166373 21.64 0.000 .327437 .3926541
|
std_lag_2index_nsa | -.0562578 .0177317 -3.17 0.002 -.0910113 -.0215044
_cons | -.0520827 .0081361 -6.40 0.000 -.0680291 -.0361363
-----------------------------------------------------------------------------------------
Instruments for differenced equation
GMM-type: L(2/.).std_f_sh_first_msa10_mc
Standard: D.std_lag_2index_nsa
Instruments for level equation
Standard: _cons
. estat sargan
Sargan test of overidentifying restrictions
H0: Overidentifying restrictions are valid
chi2(104) = 1281.709
Prob > chi2 = 0.0000
2. I ran other equations (with 2 lags of DV) for reliable estimation and addressing autocorrelation (if the xtabond is insufficient as the Sargan test is significant).
Thank you very much for your kind help!
I ran the xtreg, fe model to test the effect of my IV on the DV. I realized the data had autocorrelation (Wooldridge test). So, I conducted xtabond. The artests(2) (estat xtabond) were correct (order 1: significant and order 2: non-significant) only if I take lags(2). Hence, I took 2 lags. I followed it with the Sargan test (estat sargan). The result was significant.
xtabond equation:
xtabond std_f_sh_first_msa10_mc std_lag_2index_nsa std_ln_nsize_1yr std_outward_orientation std_hhi_n_pat_mainclass std_degree_centralization std_ln_emp_hightech std_pc_annual_payment_hightech y_1-y_17, lags(1) artests(2)
Arellano–Bond dynamic panel-data estimation Number of obs = 4,581
Group variable: MSAstate Number of groups = 424
Time variable: year
Obs per group:
min = 1
avg = 10.80425
max = 13
Number of instruments = 125 Wald chi2(22) = 610.54
Prob > chi2 = 0.0000
One-step results
------------------------------------------------------------------------------------------------
std_f_sh_first_msa10_mc | Coefficient Std. err. z P>|z| [95% conf. interval]
-------------------------------+----------------------------------------------------------------
std_f_sh_first_msa10_mc |
L1. | .1652581 .0226839 7.29 0.000 .1207984 .2097177
L2. | .1705293 .0191928 8.89 0.000 .1329122 .2081464
|
std_lag_2index_nsa | -.0657571 .020347 -3.23 0.001 -.1056365 -.0258777
std_ln_nsize_1yr | .0924772 .0782206 1.18 0.237 -.0608324 .2457867
std_outward_orientation | .0244185 .009956 2.45 0.014 .0049052 .0439319
std_hhi_n_pat_mainclass | .0183985 .0151115 1.22 0.223 -.0112195 .0480165
std_degree_centralization | .0376602 .0198398 1.90 0.058 -.001225 .0765455
std_ln_emp_hightech | .0339718 .0421255 0.81 0.420 -.0485926 .1165363
std_pc_annual_payment_hightech | .0476782 .0289956 1.64 0.100 -.0091521 .1045086
y_3 | .2831649 .0694936 4.07 0.000 .14696 .4193698
y_4 | .2823377 .0649208 4.35 0.000 .1550952 .4095802
y_5 | .2957124 .0609644 4.85 0.000 .1762243 .4152004
y_6 | .3263206 .0574517 5.68 0.000 .2137173 .4389239
y_7 | .3015834 .0536802 5.62 0.000 .1963721 .4067946
y_8 | .3749698 .050919 7.36 0.000 .2751703 .4747693
y_9 | .386725 .0511317 7.56 0.000 .2865087 .4869414
y_10 | .3402882 .0511256 6.66 0.000 .2400839 .4404926
y_11 | .2469398 .0488287 5.06 0.000 .1512373 .3426422
y_12 | .1356522 .0466845 2.91 0.004 .0441523 .2271522
y_13 | .0971989 .0462503 2.10 0.036 .00655 .1878479
y_14 | -.0041391 .0449296 -0.09 0.927 -.0921994 .0839212
y_15 | -.0111178 .0377203 -0.29 0.768 -.0850483 .0628127
_cons | -.3968184 .0417313 -9.51 0.000 -.4786103 -.3150266
------------------------------------------------------------------------------------------------
Instruments for differenced equation
GMM-type: L(2/.).std_f_sh_first_msa10_mc
Standard: D.std_lag_2index_nsa D.std_ln_nsize_1yr D.std_outward_orientation
D.std_hhi_n_pat_mainclass D.std_degree_centralization D.std_ln_emp_hightech
D.std_pc_annual_payment_hightech D.y_3 D.y_4 D.y_5 D.y_6 D.y_7 D.y_8 D.y_9
D.y_10 D.y_11 D.y_12 D.y_13 D.y_14 D.y_15
Instruments for level equation
Standard: _cons
Sargan test
estat sargan
Sargan test of overidentifying restrictions
H0: Overidentifying restrictions are valid
chi2(102) = 862.8817
Prob > chi2 = 0.0000
Please help:
1. The Sargan test is significant. Does it mean the instrument is invalid? What can I do to fix this issue? I learned that it may be solved if I reduce the number of instruments or collapse them (not sure how). The analysis shows that the number of instruments is 125 - I am not sure how STATA creates them, so, I don't know how to reduce their number. Even if I remove all controls and year dummy, the number of instruments was 107 and the Sargan test was significant.
xtabond std_f_sh_first_msa10_mc std_lag_2index_nsa, lags(1) artests(2)
Arellano–Bond dynamic panel-data estimation Number of obs = 5,717
Group variable: MSAstate Number of groups = 439
Time variable: year
Obs per group:
min = 3
avg = 13.02278
max = 14
Number of instruments = 107 Wald chi2(2) = 498.65
Prob > chi2 = 0.0000
One-step results
-----------------------------------------------------------------------------------------
std_f_sh_first_msa10_mc | Coefficient Std. err. z P>|z| [95% conf. interval]
------------------------+----------------------------------------------------------------
std_f_sh_first_msa10_mc |
L1. | .3600455 .0166373 21.64 0.000 .327437 .3926541
|
std_lag_2index_nsa | -.0562578 .0177317 -3.17 0.002 -.0910113 -.0215044
_cons | -.0520827 .0081361 -6.40 0.000 -.0680291 -.0361363
-----------------------------------------------------------------------------------------
Instruments for differenced equation
GMM-type: L(2/.).std_f_sh_first_msa10_mc
Standard: D.std_lag_2index_nsa
Instruments for level equation
Standard: _cons
. estat sargan
Sargan test of overidentifying restrictions
H0: Overidentifying restrictions are valid
chi2(104) = 1281.709
Prob > chi2 = 0.0000
2. I ran other equations (with 2 lags of DV) for reliable estimation and addressing autocorrelation (if the xtabond is insufficient as the Sargan test is significant).
- FE panel regression with Driscoll-Kraay standard errors: xtscc std_f_sh_first_msa10_mc l.std_f_sh_first_msa10_mc l2.std_f_sh_first_msa10_mc std_lag_2index_nsa std_ln_nsize_1yr std_outward_orientation std_hhi_n_pat_mainclass std_degree_centralization std_ln_emp_hightech std_pc_annual_payment_hightech i.year, fe
- System GMM/Blundell-Bond estimator: xtdpdsys std_f_sh_first_msa10_mc std_lag_2index_nsa std_ln_nsize_1yr std_outward_orientation std_hhi_n_pat_mainclass std_degree_centralization std_ln_emp_hightech std_pc_annual_payment_hightech y_1 y_2 y_3 y_4 y_5 y_6 y_7 y_8 y_9 y_10 y_11 y_12 y_13 y_14 y_15 y_16 y_17, lags(2) artests(2)
The Sargan test is still significant.
- FE panel regression with autoregressive errors: xtregar std_f_sh_first_msa10_mc l(1/2).std_f_sh_first_msa10_mc std_lag_2index_nsa std_ln_nsize_1yr std_outward_orientation std_hhi_n_pat_mainclass std_degree_centralization std_ln_emp_hightech std_pc_annual_payment_hightech y_1-y_17, fe
Thank you very much for your kind help!
Comment