Dear all,
I am currently running a regression with IV-FE model. My outcome is a dummy indicate whether you have the disease or not. Now, I am trying see the long-term effect of my x to the disease, I use an lagged model, my code is like:
xtivreg disease L1.age L1.age2 L1.inter1 L1.inter2 L1.marital (L1.x = L1.indicator) i.wave , first fe vce(r)
First-stage within regression
Fixed-effects (within) regression Number of obs = 25,525
Group variable: newid Number of groups = 18,365
R-squared: Obs per group:
Within = 0.1687 min = 1
Between = 0.0021 avg = 1.4
Overall = 0.0002 max = 2
F(7,18364) = 82.21
corr(u_i, Xb) = -0.4218 Prob > F = 0.0000
(Std. err. adjusted for 18,365 clusters in newid)
------------------------------------------------------------------------------
| Robust
__000004 | Coefficient std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
L1. age | .0397042 .0104795 3.79 0.000 .0191634 .0602451
L1.age2 | .0036122 .0004886 7.39 0.000 .0026546 .0045699
L1. inter1| -.0547736 .0079861 -6.86 0.000 -.070427 -.0391202
L1.inter2 | -.0044567 .000495 -9.00 0.000 -.005427 -.0034863
L1. marital| .0146429 .0169367 0.86 0.387 -.0185547 .0478405
|
wave |
2 | 0 (empty)
5 | 0 (empty)
6 | -.0807096 .0137406 -5.87 0.000 -.1076424 -.0537768
7 | 0 (omitted)
|
L1. indicator | .2060537 .0203972 10.10 0.000 .1660734 .2460341
|
_cons | .7212392 .0451787 15.96 0.000 .6326847 .8097937
-------------+----------------------------------------------------------------
sigma_u | .53949364
sigma_e | .16508018
rho | .91438564 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Fixed-effects (within) IV regression Number of obs = 73,734
Group variable: newid Number of groups = 40,602
R-squared: Obs per group:
Within = 0.0934 min = 1
Between = 0.0246 avg = 1.8
Overall = 0.0363 max = 4
Wald chi2(9) = 5429.12
corr(u_i, Xb) = 0.0183 Prob > chi2 = 0.0000
(Std. err. adjusted for 40,602 clusters in newid)
------------------------------------------------------------------------------
| Robust
heartever | Coefficient std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
L1.x | .0095102 .0202803 0.47 0.639 -.0302385 .049259
|
L1.age | -.0022252 .0029922 -0.74 0.457 -.0080898 .0036394
|
L1.age2 | .000105 .0001101 0.95 0.340 -.0001108 .0003209
L1. inter1| .0050796 .0021004 2.42 0.016 .0009629 .0091963
|
L1.inter2 | .0001413 .0001388 1.02 0.309 -.0001308 .0004134
|
L1.marital | -.016704 .009044 -1.85 0.065 -.0344299 .0010218
|
wave |
5 | .0635051 .0143948 4.41 0.000 .0352919 .0917184
6 | .0895997 .0182082 4.92 0.000 .0539124 .1252871
7 | .1143624 .022165 5.16 0.000 .0709198 .1578051
|
_cons | .0691962 .016693 4.15 0.000 .0364785 .101914
-------------+----------------------------------------------------------------
sigma_u | .35666343
sigma_e | .16525474
rho | .8232624 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Instrumented: L.x
Instruments: L.age L.age2 L.inter1 L.inter2 L.marital 5.wave
6.wave 7.wave L.indicator
My dataset contains waves from 1 to 7 except 3. As you can see in the first stage, coefficient for wave 2 and 5 are empty and I am not sure what happens here. I will appreciate if anyone can help me with it.
Best,
Eve
I am currently running a regression with IV-FE model. My outcome is a dummy indicate whether you have the disease or not. Now, I am trying see the long-term effect of my x to the disease, I use an lagged model, my code is like:
xtivreg disease L1.age L1.age2 L1.inter1 L1.inter2 L1.marital (L1.x = L1.indicator) i.wave , first fe vce(r)
First-stage within regression
Fixed-effects (within) regression Number of obs = 25,525
Group variable: newid Number of groups = 18,365
R-squared: Obs per group:
Within = 0.1687 min = 1
Between = 0.0021 avg = 1.4
Overall = 0.0002 max = 2
F(7,18364) = 82.21
corr(u_i, Xb) = -0.4218 Prob > F = 0.0000
(Std. err. adjusted for 18,365 clusters in newid)
------------------------------------------------------------------------------
| Robust
__000004 | Coefficient std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
L1. age | .0397042 .0104795 3.79 0.000 .0191634 .0602451
L1.age2 | .0036122 .0004886 7.39 0.000 .0026546 .0045699
L1. inter1| -.0547736 .0079861 -6.86 0.000 -.070427 -.0391202
L1.inter2 | -.0044567 .000495 -9.00 0.000 -.005427 -.0034863
L1. marital| .0146429 .0169367 0.86 0.387 -.0185547 .0478405
|
wave |
2 | 0 (empty)
5 | 0 (empty)
6 | -.0807096 .0137406 -5.87 0.000 -.1076424 -.0537768
7 | 0 (omitted)
|
L1. indicator | .2060537 .0203972 10.10 0.000 .1660734 .2460341
|
_cons | .7212392 .0451787 15.96 0.000 .6326847 .8097937
-------------+----------------------------------------------------------------
sigma_u | .53949364
sigma_e | .16508018
rho | .91438564 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Fixed-effects (within) IV regression Number of obs = 73,734
Group variable: newid Number of groups = 40,602
R-squared: Obs per group:
Within = 0.0934 min = 1
Between = 0.0246 avg = 1.8
Overall = 0.0363 max = 4
Wald chi2(9) = 5429.12
corr(u_i, Xb) = 0.0183 Prob > chi2 = 0.0000
(Std. err. adjusted for 40,602 clusters in newid)
------------------------------------------------------------------------------
| Robust
heartever | Coefficient std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
L1.x | .0095102 .0202803 0.47 0.639 -.0302385 .049259
|
L1.age | -.0022252 .0029922 -0.74 0.457 -.0080898 .0036394
|
L1.age2 | .000105 .0001101 0.95 0.340 -.0001108 .0003209
L1. inter1| .0050796 .0021004 2.42 0.016 .0009629 .0091963
|
L1.inter2 | .0001413 .0001388 1.02 0.309 -.0001308 .0004134
|
L1.marital | -.016704 .009044 -1.85 0.065 -.0344299 .0010218
|
wave |
5 | .0635051 .0143948 4.41 0.000 .0352919 .0917184
6 | .0895997 .0182082 4.92 0.000 .0539124 .1252871
7 | .1143624 .022165 5.16 0.000 .0709198 .1578051
|
_cons | .0691962 .016693 4.15 0.000 .0364785 .101914
-------------+----------------------------------------------------------------
sigma_u | .35666343
sigma_e | .16525474
rho | .8232624 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Instrumented: L.x
Instruments: L.age L.age2 L.inter1 L.inter2 L.marital 5.wave
6.wave 7.wave L.indicator
My dataset contains waves from 1 to 7 except 3. As you can see in the first stage, coefficient for wave 2 and 5 are empty and I am not sure what happens here. I will appreciate if anyone can help me with it.
Best,
Eve
Comment