Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • What does 0(empty) means for time dummy?

    Dear all,

    I am currently running a regression with IV-FE model. My outcome is a dummy indicate whether you have the disease or not. Now, I am trying see the long-term effect of my x to the disease, I use an lagged model, my code is like:
    xtivreg disease L1.age L1.age2 L1.inter1 L1.inter2 L1.marital (L1.x = L1.indicator) i.wave , first fe vce(r)

    First-stage within regression

    Fixed-effects (within) regression Number of obs = 25,525
    Group variable: newid Number of groups = 18,365

    R-squared: Obs per group:
    Within = 0.1687 min = 1
    Between = 0.0021 avg = 1.4
    Overall = 0.0002 max = 2

    F(7,18364) = 82.21
    corr(u_i, Xb) = -0.4218 Prob > F = 0.0000

    (Std. err. adjusted for 18,365 clusters in newid)
    ------------------------------------------------------------------------------
    | Robust
    __000004 | Coefficient std. err. t P>|t| [95% conf. interval]
    -------------+----------------------------------------------------------------
    L1. age | .0397042 .0104795 3.79 0.000 .0191634 .0602451

    L1.age2 | .0036122 .0004886 7.39 0.000 .0026546 .0045699

    L1. inter1| -.0547736 .0079861 -6.86 0.000 -.070427 -.0391202

    L1.inter2 | -.0044567 .000495 -9.00 0.000 -.005427 -.0034863

    L1. marital| .0146429 .0169367 0.86 0.387 -.0185547 .0478405
    |
    wave |
    2 | 0 (empty)
    5 | 0 (empty)
    6 | -.0807096 .0137406 -5.87 0.000 -.1076424 -.0537768
    7 | 0 (omitted)
    |
    L1. indicator | .2060537 .0203972 10.10 0.000 .1660734 .2460341
    |
    _cons | .7212392 .0451787 15.96 0.000 .6326847 .8097937
    -------------+----------------------------------------------------------------
    sigma_u | .53949364
    sigma_e | .16508018
    rho | .91438564 (fraction of variance due to u_i)
    ------------------------------------------------------------------------------

    Fixed-effects (within) IV regression Number of obs = 73,734
    Group variable: newid Number of groups = 40,602

    R-squared: Obs per group:
    Within = 0.0934 min = 1
    Between = 0.0246 avg = 1.8
    Overall = 0.0363 max = 4


    Wald chi2(9) = 5429.12
    corr(u_i, Xb) = 0.0183 Prob > chi2 = 0.0000

    (Std. err. adjusted for 40,602 clusters in newid)
    ------------------------------------------------------------------------------
    | Robust
    heartever | Coefficient std. err. z P>|z| [95% conf. interval]
    -------------+----------------------------------------------------------------
    L1.x | .0095102 .0202803 0.47 0.639 -.0302385 .049259
    |
    L1.age | -.0022252 .0029922 -0.74 0.457 -.0080898 .0036394
    |
    L1.age2 | .000105 .0001101 0.95 0.340 -.0001108 .0003209

    L1. inter1| .0050796 .0021004 2.42 0.016 .0009629 .0091963
    |
    L1.inter2 | .0001413 .0001388 1.02 0.309 -.0001308 .0004134
    |
    L1.marital | -.016704 .009044 -1.85 0.065 -.0344299 .0010218
    |
    wave |
    5 | .0635051 .0143948 4.41 0.000 .0352919 .0917184
    6 | .0895997 .0182082 4.92 0.000 .0539124 .1252871
    7 | .1143624 .022165 5.16 0.000 .0709198 .1578051
    |
    _cons | .0691962 .016693 4.15 0.000 .0364785 .101914
    -------------+----------------------------------------------------------------
    sigma_u | .35666343
    sigma_e | .16525474
    rho | .8232624 (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    Instrumented: L.x
    Instruments: L.age L.age2 L.inter1 L.inter2 L.marital 5.wave
    6.wave 7.wave L.indicator


    My dataset contains waves from 1 to 7 except 3. As you can see in the first stage, coefficient for wave 2 and 5 are empty and I am not sure what happens here. I will appreciate if anyone can help me with it.

    Best,
    Eve

  • #2
    (empty) in the coefficient table is a label that identifies factor levels that are specified in the model but are not present in the estimation sample. The different sample size for the first stage regression on L1.x of 25,525 compared to the main outcome regression 73,734 indicates to me that you have missing values in x and that the levels 2 and 5 of wave do not occur when x is not missing.

    The (empty) label more commonly happens for unobserved combinations of factor variables in an interaction, such as in the following regression using the auto data where rep78 does not take on the values 1 or 2 when foreign is 1 (Foreign).
    Code:
    . sysuse auto
    (1978 automobile data)
    
    . regress mpg for#rep
    note: 1.foreign#1b.rep78 identifies no observations in the sample.
    note: 1.foreign#2.rep78 identifies no observations in the sample.
    
          Source |       SS           df       MS      Number of obs   =        69
    -------------+----------------------------------   F(7, 61)        =      4.88
           Model |  839.550121         7  119.935732   Prob > F        =    0.0002
        Residual |  1500.65278        61  24.6008652   R-squared       =    0.3588
    -------------+----------------------------------   Adj R-squared   =    0.2852
           Total |   2340.2029        68  34.4147485   Root MSE        =    4.9599
    
    -------------------------------------------------------------------------------
              mpg | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    --------------+----------------------------------------------------------------
    foreign#rep78 |
      Domestic#2  |     -1.875   3.921166    -0.48   0.634    -9.715855    5.965855
      Domestic#3  |         -2   3.634773    -0.55   0.584    -9.268178    5.268178
      Domestic#4  |  -2.555556   3.877352    -0.66   0.512     -10.3088     5.19769
      Domestic#5  |         11   4.959926     2.22   0.030     1.082015    20.91798
       Foreign#1  |          0  (empty)
       Foreign#2  |          0  (empty)
       Foreign#3  |   2.333333   4.527772     0.52   0.608    -6.720507    11.38717
       Foreign#4  |   3.888889   3.877352     1.00   0.320    -3.864357    11.64213
       Foreign#5  |   5.333333   3.877352     1.38   0.174    -2.419912    13.08658
                  |
            _cons |         21   3.507197     5.99   0.000     13.98693    28.01307
    -------------------------------------------------------------------------------

    Comment


    • #3
      Hi Jeff, thanks for the reply.

      Yes, I guess this is the reason. However, in my case with the lagged model, I expect to see wave 1, 4, 5 and 6 are used for first stage estimation. So wave 2 and 7 should show with (empty) as they are in the sample but not estimated with the regression.

      Also, does this influence my estimation for the key variable x here?

      Comment

      Working...
      X