Dear Statalisters,
I have a dataset collected from 8 countries and ≥20 hospitals. I want to fit a nested, mixed-effect logistic regression (hence has a 3-level) as this reference suggests (Reference). So, I used hospitals nested within countries as random effects and fit the model. However, I get an unexpected 95% CI for the countries (please see below).
What does that mean? Does it mean no need to include countries as random-effect?
Reference: Multilevel and Longitudinal Modeling Using Stata, Fourth Edition
I have a dataset collected from 8 countries and ≥20 hospitals. I want to fit a nested, mixed-effect logistic regression (hence has a 3-level) as this reference suggests (Reference). So, I used hospitals nested within countries as random effects and fit the model. However, I get an unexpected 95% CI for the countries (please see below).
What does that mean? Does it mean no need to include countries as random-effect?
Code:
melogit died30in age_sd cci_sd i.(sex cci_htn) ib(frequent).race ib(frequent).infx_source || country: || hospital:, nolog or note: 3.infx_source != 0 predicts failure perfectly; 3.infx_source omitted and 23 obs not used. note: 10.infx_source != 0 predicts failure perfectly; 10.infx_source omitted and 44 obs not used. Mixed-effects logistic regression Number of obs = 3,207 Grouping information ------------------------------------------------------------- | No. of Observations per group Group variable | groups Minimum Average Maximum ----------------+-------------------------------------------- country | 7 6 458.1 1,865 hospital | 21 6 152.7 474 ------------------------------------------------------------- Integration method: mvaghermite Integration pts. = 7 Wald chi2(14) = 187.86 Log likelihood = -776.97614 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------------------ died30in | Odds ratio Std. err. z P>|z| [95% conf. interval] -------------------------------+---------------------------------------------------------------- age_sd | 1.218493 .136446 1.76 0.0776 .9783766 1.51754 cci_sd | 2.401467 .2392206 8.79 0.0000 1.975535 2.919231 | sex | Man | 1 (base) Woman | 1.299266 .180295 1.89 0.0592 .9898734 1.705362 | cci_htn | No | 1 (base) Yes | .861246 .1566368 -0.82 0.4115 .6029999 1.230091 | race | Asian | 1.034492 .6099411 0.06 0.9541 .3257281 3.285484 Black | 2.072429 .7169011 2.11 0.0352 1.052033 4.082535 South Asian | 2.446634 .8445341 2.59 0.0095 1.243797 4.812696 White | 1 (base) | infx_source | Abdominal | .5330493 .1407734 -2.38 0.0172 .3176676 .8944619 Bloodstream | 1.154067 .336441 0.49 0.6231 .6517534 2.043519 Bone & joints | 1 (empty) COVID-19 | 1.270447 .2622513 1.16 0.2462 .8477109 1.903993 Neurological | 3.828529 2.292373 2.24 0.0250 1.184038 12.37936 Respiratory (except COVID-19) | 1 (base) Soft/cutaneous tissues | .5645505 .1520924 -2.12 0.0338 .3329549 .9572386 Urogenital | .535857 .1095438 -3.05 0.0023 .3589551 .7999406 Unknown source | 2.90591 1.196004 2.59 0.0095 1.297023 6.510534 Other | 1 (empty) | _cons | .0542853 .0176503 -8.96 0.0000 .0287027 .1026696 -------------------------------+---------------------------------------------------------------- country | var(_cons)| 6.01e-34 3.61e-18 . . -------------------------------+---------------------------------------------------------------- country>hospital | var(_cons)| 1.287618 .4979894 .6033688 2.747839 ------------------------------------------------------------------------------------------------ Note: Estimates are transformed only in the first equation to odds ratios. Note: _cons estimates baseline odds (conditional on zero random effects). LR test vs. logistic model: chibar2(01) = 150.55 Prob >= chibar2 = 0.0000
Reference: Multilevel and Longitudinal Modeling Using Stata, Fourth Edition
Comment