Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • BIC score in OLS

    Hello,

    I have 4 different models which I estimated using OLS, in which more variables are added with each model. I determined the best model using the BIC. However, I have read that using BIC is more common in maximum likelihood estimations. On the contrary, I did not find a lot literature on BIC in OLS models. My question now is whether I can use BIC in the OLS context, and if not, why not? Should I better look at the adjusted R²?

    For clarification, I include the output of one of my models:
    Code:
    . regress pctchangecarbonintensity firmsize profitability leverage age capitalintensity CAPEX K
    > Zindex elektricitygenerator Carbonleakage i.Province_n SME  publicfirm
    
          Source |       SS           df       MS      Number of obs   =       158
    -------------+----------------------------------   F(21, 136)      =      2.04
           Model |  3.44051682        21  .163834134   Prob > F        =    0.0078
        Residual |  10.8981796       136  .080133673   R-squared       =    0.2399
    -------------+----------------------------------   Adj R-squared   =    0.1226
           Total |  14.3386964       157  .091329276   Root MSE        =    .28308
    
    ----------------------------------------------------------------------------------------------
        pctchangecarbonintensity |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -----------------------------+----------------------------------------------------------------
                        firmsize |  -.0471093   .0245416    -1.92   0.057    -.0956418    .0014233
                   profitability |   1.063863   .8113558     1.31   0.192    -.5406424    2.668368
                        leverage |   .2303086   .1118611     2.06   0.041     .0090965    .4515208
                             age |  -.0023983   .0011083    -2.16   0.032    -.0045901   -.0002065
                capitalintensity |   .1056074   .1177671     0.90   0.371    -.1272841     .338499
                           CAPEX |   .3921912   .4245187     0.92   0.357    -.4473204    1.231703
                         KZindex |  -.0237426   .0197443    -1.20   0.231    -.0627881     .015303
            elektricitygenerator |   .2955618   .1491594     1.98   0.050     .0005901    .5905336
                   Carbonleakage |   .0709142   .0514961     1.38   0.171    -.0309226     .172751
                                 |
                      Province_n |
    Brabant Wallon / Waals Br..  |   .1930119   .1302082     1.48   0.141    -.0644827    .4505065
                       Brussels  |    .096077   .0871738     1.10   0.272    -.0763145    .2684685
                  East-Flanders  |  -.1108972   .0805239    -1.38   0.171    -.2701381    .0483437
           Hainaut / Henegouwen  |   .0719215    .086514     0.83   0.407    -.0991653    .2430083
             Limburg / Limbourg  |  -.0789072   .0860008    -0.92   0.360     -.248979    .0911645
                   Liège / Luik  |   .0879246   .1032516     0.85   0.396    -.1162616    .2921109
                     Luxembourg  |  -.0083112   .1748158    -0.05   0.962      -.35402    .3373977
                  Namur / Namen  |   .2386252   .2933795     0.81   0.417    -.3415505     .818801
    Vlaams Brabant / Brabant ..  |  -.1705904   .1424057    -1.20   0.233    -.4522062    .1110255
                  West-Flanders  |  -.0047872   .0961534    -0.05   0.960    -.1949364     .185362
                                 |
                             SME |  -.2279518   .0749786    -3.04   0.003    -.3762267    -.079677
                      publicfirm |   .0392596   .1341881     0.29   0.770    -.2261056    .3046248
                           _cons |   .7746574   .4897592     1.58   0.116    -.1938711    1.743186
    ----------------------------------------------------------------------------------------------
    
    
    . estat ic
    
    Akaike's information criterion and Bayesian information criterion
    
    -----------------------------------------------------------------------------
           Model |        Obs  ll(null)  ll(model)      df         AIC        BIC
    -------------+---------------------------------------------------------------
               . |        158 -34.62127  -12.94635      22    69.89269   137.2698
    -----------------------------------------------------------------------------
                   Note: N=Obs used in calculating BIC; see [R] BIC note.
    Thank you very much,

    Timea

  • #2
    Timea:
    I would look at the adjusted R².
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Hello Carlo. Thank you for your answer! Could you also explain to me why? is it because BIC is designed for maximum likelihood?

      Comment


      • #4
        Timea:
        because adj_Rsq is the usual criterion used for comparing linear regressssion models with different predictors but the same regressand.
        See the valuable https://www.wiley.com/en-us/Introduc...-9780470032701, page 95; 113-114.
        Kind regards,
        Carlo
        (Stata 19.0)

        Comment


        • #5
          thank you!

          Comment


          • #6
            To expand on Carlo's helpful comment, adjusted r-square, AIC and BIC for regression are really all dependent on the size of the squared errors. They impose different penalties for the number of parameters. While adjusted r-square is traditional in regression, I'm not sure that there is a strong theoretical argument for it being better than the others. Preferences among the may also vary by discipline as so many things do.

            Comment

            Working...
            X