Hello,
I have 4 different models which I estimated using OLS, in which more variables are added with each model. I determined the best model using the BIC. However, I have read that using BIC is more common in maximum likelihood estimations. On the contrary, I did not find a lot literature on BIC in OLS models. My question now is whether I can use BIC in the OLS context, and if not, why not? Should I better look at the adjusted R²?
For clarification, I include the output of one of my models:
Thank you very much,
Timea
I have 4 different models which I estimated using OLS, in which more variables are added with each model. I determined the best model using the BIC. However, I have read that using BIC is more common in maximum likelihood estimations. On the contrary, I did not find a lot literature on BIC in OLS models. My question now is whether I can use BIC in the OLS context, and if not, why not? Should I better look at the adjusted R²?
For clarification, I include the output of one of my models:
Code:
. regress pctchangecarbonintensity firmsize profitability leverage age capitalintensity CAPEX K > Zindex elektricitygenerator Carbonleakage i.Province_n SME publicfirm Source | SS df MS Number of obs = 158 -------------+---------------------------------- F(21, 136) = 2.04 Model | 3.44051682 21 .163834134 Prob > F = 0.0078 Residual | 10.8981796 136 .080133673 R-squared = 0.2399 -------------+---------------------------------- Adj R-squared = 0.1226 Total | 14.3386964 157 .091329276 Root MSE = .28308 ---------------------------------------------------------------------------------------------- pctchangecarbonintensity | Coef. Std. Err. t P>|t| [95% Conf. Interval] -----------------------------+---------------------------------------------------------------- firmsize | -.0471093 .0245416 -1.92 0.057 -.0956418 .0014233 profitability | 1.063863 .8113558 1.31 0.192 -.5406424 2.668368 leverage | .2303086 .1118611 2.06 0.041 .0090965 .4515208 age | -.0023983 .0011083 -2.16 0.032 -.0045901 -.0002065 capitalintensity | .1056074 .1177671 0.90 0.371 -.1272841 .338499 CAPEX | .3921912 .4245187 0.92 0.357 -.4473204 1.231703 KZindex | -.0237426 .0197443 -1.20 0.231 -.0627881 .015303 elektricitygenerator | .2955618 .1491594 1.98 0.050 .0005901 .5905336 Carbonleakage | .0709142 .0514961 1.38 0.171 -.0309226 .172751 | Province_n | Brabant Wallon / Waals Br.. | .1930119 .1302082 1.48 0.141 -.0644827 .4505065 Brussels | .096077 .0871738 1.10 0.272 -.0763145 .2684685 East-Flanders | -.1108972 .0805239 -1.38 0.171 -.2701381 .0483437 Hainaut / Henegouwen | .0719215 .086514 0.83 0.407 -.0991653 .2430083 Limburg / Limbourg | -.0789072 .0860008 -0.92 0.360 -.248979 .0911645 Liège / Luik | .0879246 .1032516 0.85 0.396 -.1162616 .2921109 Luxembourg | -.0083112 .1748158 -0.05 0.962 -.35402 .3373977 Namur / Namen | .2386252 .2933795 0.81 0.417 -.3415505 .818801 Vlaams Brabant / Brabant .. | -.1705904 .1424057 -1.20 0.233 -.4522062 .1110255 West-Flanders | -.0047872 .0961534 -0.05 0.960 -.1949364 .185362 | SME | -.2279518 .0749786 -3.04 0.003 -.3762267 -.079677 publicfirm | .0392596 .1341881 0.29 0.770 -.2261056 .3046248 _cons | .7746574 .4897592 1.58 0.116 -.1938711 1.743186 ---------------------------------------------------------------------------------------------- . estat ic Akaike's information criterion and Bayesian information criterion ----------------------------------------------------------------------------- Model | Obs ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- . | 158 -34.62127 -12.94635 22 69.89269 137.2698 ----------------------------------------------------------------------------- Note: N=Obs used in calculating BIC; see [R] BIC note.
Timea
Comment