My understanding is that -regress- and -anova- are similar/identical. But I have a biological study which gives me conflicting outputs. We have five groups of five animals given different doses of a drug, and a response variable:
R values are the same, as to be expected, but the p value from -anova- indicates no significant difference across groups, hence no need for -pwcompare-, while -regress- shows differences in the two highest dose groups.
The problem with -anova- is that we have some outliers:

Is -regress- a better option in this case?
Data:
Code:
. anova response dose Number of obs = 25 R-squared = 0.3047 Root MSE = 2.80447 Adj R-squared = 0.1656 Source | Partial SS df MS F Prob>F -----------+---------------------------------------------------- Model | 68.921099 4 17.230275 2.19 0.1069 | dose | 68.921099 4 17.230275 2.19 0.1069 | Residual | 157.30149 20 7.8650744 -----------+---------------------------------------------------- Total | 226.22259 24 9.4259411 . regress response i.dose Source | SS df MS Number of obs = 25 -------------+---------------------------------- F(4, 20) = 2.19 Model | 68.9210991 4 17.2302748 Prob > F = 0.1069 Residual | 157.301487 20 7.86507437 R-squared = 0.3047 -------------+---------------------------------- Adj R-squared = 0.1656 Total | 226.222587 24 9.42594111 Root MSE = 2.8045 ------------------------------------------------------------------------------ response | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dose | 10 | 1.993438 1.773705 1.12 0.274 -1.706446 5.693321 50 | 2.910306 1.773705 1.64 0.116 -.7895783 6.61019 100 | 4.432047 1.773705 2.50 0.021 .7321629 8.131931 200 | 4.421635 1.773705 2.49 0.022 .7217513 8.121519 | _cons | 13.86277 1.254199 11.05 0.000 11.24656 16.47899 ------------------------------------------------------------------------------
The problem with -anova- is that we have some outliers:
Is -regress- a better option in this case?
Data:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int dose double response 0 10.99277305 0 16.23023442 0 15.34134276 0 13.17231787 0 13.57720313 10 14.61668459 10 17.15264022 10 16.05454947 10 15.15194346 10 16.305241 50 16.35721169 50 19.48033492 50 12.18403701 50 16.1171514 50 19.72666485 100 17.87319768 100 12.98239008 100 22.46244988 100 19.36247368 100 18.79359433 200 12.00186494 200 19.9286369 200 19.0495354 200 19.31872792 200 21.12328229 end
Comment