And that, Dave, is the answer that've been looking for! You identified the point that I was overlooking...correction for FWER! 
Thank you, so much!

Thank you, so much!

* Example generated by -dataex-. To install: ssc install dataex clear input int dose double response2 0 .003192307692307692 0 .006386363636363636 0 .00450381679389313 10 1.2737819025522044 10 1.2633228840125392 10 1.2972972972972974 10 2.8341708542713566 10 5.055555555555555 50 12.352941176470587 50 4.388571428571429 50 7.451737451737452 50 5.728476821192054 50 6.473684210526317 100 12.569269521410579 100 10.555555555555555 100 10.587301587301589 100 10.833333333333334 100 9.278350515463917 200 42.1875 200 39.075630252100844 200 38.983050847457626 200 43.333333333333336 200 40.28776978417267 end
. regress response2 i.dose Source | SS df MS Number of obs = 23 -------------+---------------------------------- F(4, 18) = 335.68 Model | 5117.72301 4 1279.43075 Prob > F = 0.0000 Residual | 68.6057438 18 3.81143021 R-squared = 0.9868 -------------+---------------------------------- Adj R-squared = 0.9838 Total | 5186.32875 22 235.742216 Root MSE = 1.9523 ------------------------------------------------------------------------------ response2 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- dose | 10 | 2.340132 1.42575 1.64 0.118 -.6552579 5.335521 50 | 7.274388 1.42575 5.10 0.000 4.278999 10.26978 100 | 10.76007 1.42575 7.55 0.000 7.764679 13.75546 200 | 40.76876 1.42575 28.59 0.000 37.77337 43.76415 | _cons | .0046942 1.127154 0.00 0.997 -2.363369 2.372757 ------------------------------------------------------------------------------ . pwcompare dose, mcompare(dunnett) Pairwise comparisons of marginal linear predictions Margins : asbalanced --------------------------- | Number of | Comparisons -------------+------------- dose | 4 --------------------------- -------------------------------------------------------------- | Dunnett | Contrast Std. Err. [95% Conf. Interval] -------------+------------------------------------------------ dose | 10 vs 0 | 2.340132 1.42575 -1.475284 6.155547 50 vs 0 | 7.274388 1.42575 3.458972 11.0898 100 vs 0 | 10.76007 1.42575 6.944652 14.57548 200 vs 0 | 40.76876 1.42575 36.95335 44.58418 -------------------------------------------------------------- Note: The dunnett method requires balanced data for proper level coverage. A factor was found to be unbalanced.
. testparm i.dose ( 1) 10.dose = 0 ( 2) 50.dose = 0 ( 3) 100.dose = 0 ( 4) 200.dose = 0 F( 4, 18) = 335.68 Prob > F = 0.0000
Comment