Hi all,
I wanted to ask about the assumption of proportional odds and the Brant test. I have two questions; First, is a model useless after the assumptions is violated? Specifically, if theoretically significant variables do not break the assumption, but general controls do break the assumptions, is the model invalid? Secondly, can limiting the number of categories in the dependent variable help the model? Since the dependent variable has seven categories, I wonder if limiting them down to a simple "disagree, neutral, agree" would limit the cross over between categories.
I have some output below, showing an ordinal logistic regression predicting "satisfaction with hours worked". The dependent variable has seven categories. Theoretically I'm interested most in the variable titled "M_event", which contains six types of job mobility.
The model basically predicts lots of theoretically relevant things, but the brant test suggests that it's broken the PO/PL assumption, including the all important M_event factor variable.
Looking at the results of the Brant test for M_event, I noticed that the first three categories break the assumption, but the last three don't. The first three categories capture instance where individual leave their employer, the last three categories look at instances where people change jobs with the same employer. I think theoretically, leaving an employer constitutes a greater intervention than changing jobs with the same employer, and that might be the reason why the assumption is broken as leaving a firm increases your likelihoods of crossing several categories of satisfaction, whereas changing jobs with the same employer may just improve one or two boundaries.
I recode the dependent variable into a three category variable which just captures "disagree, neutral, and agree". I run the ordinal logistic regression again.
The basic effects of M_event remain the same, with some differences in significance. However, the Brant test looks different.
The mobility events no longer violate the proportional odds assumption. Would I get away with this, or am I ignoring wider issues with the data?
I wanted to ask about the assumption of proportional odds and the Brant test. I have two questions; First, is a model useless after the assumptions is violated? Specifically, if theoretically significant variables do not break the assumption, but general controls do break the assumptions, is the model invalid? Secondly, can limiting the number of categories in the dependent variable help the model? Since the dependent variable has seven categories, I wonder if limiting them down to a simple "disagree, neutral, agree" would limit the cross over between categories.
I have some output below, showing an ordinal logistic regression predicting "satisfaction with hours worked". The dependent variable has seven categories. Theoretically I'm interested most in the variable titled "M_event", which contains six types of job mobility.
Code:
tab M_even Mobility event | Freq. Percent Cum. ----------------------------------------+----------------------------------- Same job, same employed | 86,014 79.04 79.04 Changed employer- voluntary | 8,193 7.53 86.56 Changed employer- involuntary | 2,231 2.05 88.61 Changed employer- other reason | 3,562 3.27 91.89 Changed job, kept employer- voluntary | 6,440 5.92 97.80 Changed job, kept employer- involuntary | 500 0.46 98.26 Changed job, kept employer- other | 1,890 1.74 100.00 ----------------------------------------+----------------------------------- Total | 108,830 100.00
The model basically predicts lots of theoretically relevant things, but the brant test suggests that it's broken the PO/PL assumption, including the all important M_event factor variable.
Code:
. ologit jbsat7 ljbsat7 jbsat ib0.skill i.sex /// > ib1.perm i.M_e i.qfedhi age i.child /// > /// > wave , cluster(pid) nolog Ordered logistic regression Number of obs = 76133 Wald chi2(28) = 15614.92 Prob > chi2 = 0.0000 Log pseudolikelihood = -104261.9 Pseudo R2 = 0.1577 (Std. Err. adjusted for 12317 clusters in pid) ------------------------------------------------------------------------------ | Robust jbsat7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ljbsat7 | .6102763 .0089629 68.09 0.000 .5927093 .6278434 jbsat | .7793823 .0107557 72.46 0.000 .7583015 .8004631 | skill | skilled | -.2096002 .0185973 -11.27 0.000 -.2460503 -.1731502 | sex | female | .1365385 .0200529 6.81 0.000 .0972354 .1758415 | permanent | Temporary | .2296856 .049656 4.63 0.000 .1323616 .3270097 | M_event | Changed e.. | .3293026 .0300587 10.96 0.000 .2703887 .3882165 Changed e.. | .1077459 .0592723 1.82 0.069 -.0084258 .2239175 Changed e.. | .1650086 .0461811 3.57 0.000 .0744953 .255522 Changed j.. | -.0747845 .0285645 -2.62 0.009 -.1307698 -.0187991 Changed j.. | -.0164938 .1036868 -0.16 0.874 -.2197162 .1867287 Changed j.. | .095854 .052989 1.81 0.070 -.0080025 .1997105 | qfedhi | first deg.. | .03263 .0653356 0.50 0.617 -.0954254 .1606854 teaching qf | .0117025 .0924879 0.13 0.899 -.1695705 .1929754 other hig.. | .2257928 .0621483 3.63 0.000 .1039843 .3476012 nursing qf | .2550195 .0915002 2.79 0.005 .0756824 .4343567 gce a lev.. | .313028 .0643728 4.86 0.000 .1868595 .4391964 gce o lev.. | .2851908 .0638083 4.47 0.000 .1601289 .4102528 commercia.. | .3856074 .0973005 3.96 0.000 .1949019 .576313 cse grade.. | .3057054 .0715325 4.27 0.000 .1655043 .4459064 apprentic~p | .3938594 .1300082 3.03 0.002 .139048 .6486708 other qf | .1288678 .1398562 0.92 0.357 -.1452453 .4029808 no qf | .3585312 .0674823 5.31 0.000 .2262682 .4907942 still at .. | -.0831313 .287263 -0.29 0.772 -.6461565 .4798938 | age | .0046013 .0008295 5.55 0.000 .0029755 .0062271 | child | 1 | -.0291667 .0211463 -1.38 0.168 -.0706128 .0122794 2 | .0350747 .0229193 1.53 0.126 -.0098463 .0799958 3 | -.0689519 .0389601 -1.77 0.077 -.1453123 .0074086 | wave | .0008363 .0016951 0.49 0.622 -.002486 .0041586 -------------+---------------------------------------------------------------- /cut1 | 2.471169 .0918639 2.291119 2.651219 /cut2 | 3.741284 .0880944 3.568622 3.913946 /cut3 | 5.467899 .0903708 5.290775 5.645022 /cut4 | 6.34045 .0915465 6.161022 6.519878 /cut5 | 7.771034 .0948209 7.585189 7.956879 /cut6 | 10.20031 .0992505 10.00578 10.39483 ------------------------------------------------------------------------------ . end of do-file . do "C:\Users\ADMINI~1.ADM\AppData\Local\Temp\STD10000000.tmp" . brant Brant test of parallel regression assumption | chi2 p>chi2 df -------------+------------------------------ All | 2458.61 0.000 140 -------------+------------------------------ ljbsat7 | 31.42 0.000 5 jbsat | 908.64 0.000 5 1.skill | 7.65 0.177 5 2.sex | 253.72 0.000 5 0.permanent | 4.80 0.441 5 2.M_event | 22.96 0.000 5 3.M_event | 23.08 0.000 5 4.M_event | 31.84 0.000 5 5.M_event | 5.96 0.310 5 6.M_event | 12.75 0.026 5 7.M_event | 0.83 0.975 5 2.qfedhi | 2.69 0.748 5 3.qfedhi | 10.94 0.053 5 4.qfedhi | 23.46 0.000 5 5.qfedhi | 8.59 0.127 5 6.qfedhi | 28.36 0.000 5 7.qfedhi | 31.59 0.000 5 8.qfedhi | 14.86 0.011 5 9.qfedhi | 20.11 0.001 5 10.qfedhi | 9.52 0.090 5 11.qfedhi | 21.60 0.001 5 12.qfedhi | 48.98 0.000 5 13.qfedhi | 8.18 0.147 5 age | 134.66 0.000 5 1.child | 17.99 0.003 5 2.child | 12.87 0.025 5 3.child | 7.54 0.183 5 wave | 302.19 0.000 5 A significant test statistic provides evidence that the parallel regression assumption has been violated.
I recode the dependent variable into a three category variable which just captures "disagree, neutral, and agree". I run the ordinal logistic regression again.
Code:
. ologit jbsat7mini ljbsat7mini jbsat ib0.skill i.sex /// > ib1.perm i.M_e i.qfedhi age i.child /// > wave , cluster(pid) nolog Ordered logistic regression Number of obs = 76133 Wald chi2(28) = 11534.15 Prob > chi2 = 0.0000 Log pseudolikelihood = -44463.114 Pseudo R2 = 0.2009 (Std. Err. adjusted for 12317 clusters in pid) ------------------------------------------------------------------------------ | Robust jbsat7mini | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ljbsat7mini | .9830918 .015206 64.65 0.000 .9532885 1.012895 jbsat | .677014 .0092879 72.89 0.000 .65881 .6952179 | skill | skilled | -.2097881 .0254309 -8.25 0.000 -.2596318 -.1599445 | sex | female | .1335524 .0274013 4.87 0.000 .0798468 .187258 | permanent | Temporary | .1602662 .0689351 2.32 0.020 .0251559 .2953766 | M_event | Changed e.. | .2084667 .0419358 4.97 0.000 .1262741 .2906593 Changed e.. | -.0005936 .0761938 -0.01 0.994 -.1499307 .1487436 Changed e.. | .0600634 .0607583 0.99 0.323 -.0590208 .1791475 Changed j.. | -.0998616 .0386601 -2.58 0.010 -.175634 -.0240893 Changed j.. | .2207144 .1614364 1.37 0.172 -.0956951 .537124 Changed j.. | .1026248 .0714939 1.44 0.151 -.0375006 .2427503 | qfedhi | first deg.. | .0254113 .0796304 0.32 0.750 -.1306614 .181484 teaching qf | .0416455 .1210283 0.34 0.731 -.1955655 .2788566 other hig.. | .328927 .0763287 4.31 0.000 .1793256 .4785284 nursing qf | .3529244 .1223951 2.88 0.004 .1130345 .5928144 gce a lev.. | .4723285 .0802419 5.89 0.000 .3150572 .6295997 gce o lev.. | .4268029 .0791424 5.39 0.000 .2716867 .5819191 commercia.. | .4118384 .120123 3.43 0.001 .1764017 .6472751 cse grade.. | .4287832 .0931371 4.60 0.000 .2462379 .6113285 apprentic~p | .3439612 .1689428 2.04 0.042 .0128395 .6750829 other qf | .2192476 .1771439 1.24 0.216 -.127948 .5664432 no qf | .40117 .0831582 4.82 0.000 .2381829 .564157 still at .. | -.158634 .2564787 -0.62 0.536 -.6613231 .3440551 | age | -.0002758 .0011466 -0.24 0.810 -.002523 .0019715 | child | 1 | -.0200702 .0296272 -0.68 0.498 -.0781385 .0379981 2 | .0165892 .0318352 0.52 0.602 -.0458067 .0789851 3 | -.1034556 .0521423 -1.98 0.047 -.2056526 -.0012586 | wave | .0196952 .0022694 8.68 0.000 .0152472 .0241433 -------------+---------------------------------------------------------------- /cut1 | 4.484099 .1027336 4.282745 4.685454 /cut2 | 5.326011 .1035509 5.123055 5.528967 ------------------------------------------------------------------------------ . end of do-file . do "C:\Users\ADMINI~1.ADM\AppData\Local\Temp\STD10000000.tmp"
Code:
. brant Brant test of parallel regression assumption | chi2 p>chi2 df -------------+------------------------------ All | 746.32 0.000 28 -------------+------------------------------ ljbsat7mini | 36.81 0.000 1 jbsat | 220.93 0.000 1 1.skill | 0.12 0.724 1 2.sex | 207.98 0.000 1 0.permanent | 0.79 0.373 1 2.M_event | 0.55 0.457 1 3.M_event | 1.33 0.249 1 4.M_event | 0.85 0.356 1 5.M_event | 0.07 0.796 1 6.M_event | 1.25 0.264 1 7.M_event | 0.36 0.549 1 2.qfedhi | 0.02 0.894 1 3.qfedhi | 0.99 0.321 1 4.qfedhi | 0.87 0.352 1 5.qfedhi | 1.10 0.295 1 6.qfedhi | 1.77 0.183 1 7.qfedhi | 5.15 0.023 1 8.qfedhi | 0.27 0.606 1 9.qfedhi | 2.93 0.087 1 10.qfedhi | 0.56 0.453 1 11.qfedhi | 8.91 0.003 1 12.qfedhi | 1.25 0.263 1 13.qfedhi | 0.33 0.563 1 age | 52.54 0.000 1 1.child | 0.79 0.375 1 2.child | 8.07 0.004 1 3.child | 3.98 0.046 1 wave | 18.29 0.000 1 A significant test statistic provides evidence that the parallel regression assumption has been violated. . end of do-file
Comment