Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Opinion on the Brant test and the assumption of proportional odds.

    Hi all,

    I wanted to ask about the assumption of proportional odds and the Brant test. I have two questions; First, is a model useless after the assumptions is violated? Specifically, if theoretically significant variables do not break the assumption, but general controls do break the assumptions, is the model invalid? Secondly, can limiting the number of categories in the dependent variable help the model? Since the dependent variable has seven categories, I wonder if limiting them down to a simple "disagree, neutral, agree" would limit the cross over between categories.

    I have some output below, showing an ordinal logistic regression predicting "satisfaction with hours worked". The dependent variable has seven categories. Theoretically I'm interested most in the variable titled "M_event", which contains six types of job mobility.

    Code:
     tab M_even
    
                             Mobility event |      Freq.     Percent        Cum.
    ----------------------------------------+-----------------------------------
                    Same job, same employed |     86,014       79.04       79.04
                Changed employer- voluntary |      8,193        7.53       86.56
              Changed employer- involuntary |      2,231        2.05       88.61
             Changed employer- other reason |      3,562        3.27       91.89
      Changed job, kept employer- voluntary |      6,440        5.92       97.80
    Changed job, kept employer- involuntary |        500        0.46       98.26
          Changed job, kept employer- other |      1,890        1.74      100.00
    ----------------------------------------+-----------------------------------
                                      Total |    108,830      100.00


    The model basically predicts lots of theoretically relevant things, but the brant test suggests that it's broken the PO/PL assumption, including the all important M_event factor variable.

    Code:
    . ologit jbsat7 ljbsat7 jbsat ib0.skill i.sex ///
    > ib1.perm  i.M_e  i.qfedhi age i.child ///
    > ///
    > wave , cluster(pid) nolog
    
    Ordered logistic regression                       Number of obs   =      76133
                                                      Wald chi2(28)   =   15614.92
                                                      Prob > chi2     =     0.0000
    Log pseudolikelihood =  -104261.9                 Pseudo R2       =     0.1577
    
                                    (Std. Err. adjusted for 12317 clusters in pid)
    ------------------------------------------------------------------------------
                 |               Robust
          jbsat7 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
         ljbsat7 |   .6102763   .0089629    68.09   0.000     .5927093    .6278434
           jbsat |   .7793823   .0107557    72.46   0.000     .7583015    .8004631
                 |
           skill |
        skilled  |  -.2096002   .0185973   -11.27   0.000    -.2460503   -.1731502
                 |
             sex |
         female  |   .1365385   .0200529     6.81   0.000     .0972354    .1758415
                 |
       permanent |
      Temporary  |   .2296856    .049656     4.63   0.000     .1323616    .3270097
                 |
         M_event |
    Changed e..  |   .3293026   .0300587    10.96   0.000     .2703887    .3882165
    Changed e..  |   .1077459   .0592723     1.82   0.069    -.0084258    .2239175
    Changed e..  |   .1650086   .0461811     3.57   0.000     .0744953     .255522
    Changed j..  |  -.0747845   .0285645    -2.62   0.009    -.1307698   -.0187991
    Changed j..  |  -.0164938   .1036868    -0.16   0.874    -.2197162    .1867287
    Changed j..  |    .095854    .052989     1.81   0.070    -.0080025    .1997105
                 |
          qfedhi |
    first deg..  |     .03263   .0653356     0.50   0.617    -.0954254    .1606854
    teaching qf  |   .0117025   .0924879     0.13   0.899    -.1695705    .1929754
    other hig..  |   .2257928   .0621483     3.63   0.000     .1039843    .3476012
     nursing qf  |   .2550195   .0915002     2.79   0.005     .0756824    .4343567
    gce a lev..  |    .313028   .0643728     4.86   0.000     .1868595    .4391964
    gce o lev..  |   .2851908   .0638083     4.47   0.000     .1601289    .4102528
    commercia..  |   .3856074   .0973005     3.96   0.000     .1949019     .576313
    cse grade..  |   .3057054   .0715325     4.27   0.000     .1655043    .4459064
    apprentic~p  |   .3938594   .1300082     3.03   0.002      .139048    .6486708
       other qf  |   .1288678   .1398562     0.92   0.357    -.1452453    .4029808
          no qf  |   .3585312   .0674823     5.31   0.000     .2262682    .4907942
    still at ..  |  -.0831313    .287263    -0.29   0.772    -.6461565    .4798938
                 |
             age |   .0046013   .0008295     5.55   0.000     .0029755    .0062271
                 |
           child |
              1  |  -.0291667   .0211463    -1.38   0.168    -.0706128    .0122794
              2  |   .0350747   .0229193     1.53   0.126    -.0098463    .0799958
              3  |  -.0689519   .0389601    -1.77   0.077    -.1453123    .0074086
                 |
            wave |   .0008363   .0016951     0.49   0.622     -.002486    .0041586
    -------------+----------------------------------------------------------------
           /cut1 |   2.471169   .0918639                      2.291119    2.651219
           /cut2 |   3.741284   .0880944                      3.568622    3.913946
           /cut3 |   5.467899   .0903708                      5.290775    5.645022
           /cut4 |    6.34045   .0915465                      6.161022    6.519878
           /cut5 |   7.771034   .0948209                      7.585189    7.956879
           /cut6 |   10.20031   .0992505                      10.00578    10.39483
    ------------------------------------------------------------------------------
    
    . 
    end of do-file
    
    . do "C:\Users\ADMINI~1.ADM\AppData\Local\Temp\STD10000000.tmp"
    
    . brant
    
    Brant test of parallel regression assumption
    
                  |       chi2     p>chi2      df
     -------------+------------------------------
              All |    2458.61      0.000     140
     -------------+------------------------------
          ljbsat7 |      31.42      0.000       5
            jbsat |     908.64      0.000       5
          1.skill |       7.65      0.177       5
            2.sex |     253.72      0.000       5
      0.permanent |       4.80      0.441       5
        2.M_event |      22.96      0.000       5
        3.M_event |      23.08      0.000       5
        4.M_event |      31.84      0.000       5
        5.M_event |       5.96      0.310       5
        6.M_event |      12.75      0.026       5
        7.M_event |       0.83      0.975       5
         2.qfedhi |       2.69      0.748       5
         3.qfedhi |      10.94      0.053       5
         4.qfedhi |      23.46      0.000       5
         5.qfedhi |       8.59      0.127       5
         6.qfedhi |      28.36      0.000       5
         7.qfedhi |      31.59      0.000       5
         8.qfedhi |      14.86      0.011       5
         9.qfedhi |      20.11      0.001       5
        10.qfedhi |       9.52      0.090       5
        11.qfedhi |      21.60      0.001       5
        12.qfedhi |      48.98      0.000       5
        13.qfedhi |       8.18      0.147       5
              age |     134.66      0.000       5
          1.child |      17.99      0.003       5
          2.child |      12.87      0.025       5
          3.child |       7.54      0.183       5
             wave |     302.19      0.000       5
    
    A significant test statistic provides evidence that the parallel
    regression assumption has been violated.
    Looking at the results of the Brant test for M_event, I noticed that the first three categories break the assumption, but the last three don't. The first three categories capture instance where individual leave their employer, the last three categories look at instances where people change jobs with the same employer. I think theoretically, leaving an employer constitutes a greater intervention than changing jobs with the same employer, and that might be the reason why the assumption is broken as leaving a firm increases your likelihoods of crossing several categories of satisfaction, whereas changing jobs with the same employer may just improve one or two boundaries.

    I recode the dependent variable into a three category variable which just captures "disagree, neutral, and agree". I run the ordinal logistic regression again.

    Code:
    . ologit jbsat7mini ljbsat7mini jbsat ib0.skill i.sex ///
    > ib1.perm  i.M_e  i.qfedhi age i.child ///
    > wave , cluster(pid) nolog
    
    Ordered logistic regression                       Number of obs   =      76133
                                                      Wald chi2(28)   =   11534.15
                                                      Prob > chi2     =     0.0000
    Log pseudolikelihood = -44463.114                 Pseudo R2       =     0.2009
    
                                    (Std. Err. adjusted for 12317 clusters in pid)
    ------------------------------------------------------------------------------
                 |               Robust
      jbsat7mini |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
     ljbsat7mini |   .9830918    .015206    64.65   0.000     .9532885    1.012895
           jbsat |    .677014   .0092879    72.89   0.000       .65881    .6952179
                 |
           skill |
        skilled  |  -.2097881   .0254309    -8.25   0.000    -.2596318   -.1599445
                 |
             sex |
         female  |   .1335524   .0274013     4.87   0.000     .0798468     .187258
                 |
       permanent |
      Temporary  |   .1602662   .0689351     2.32   0.020     .0251559    .2953766
                 |
         M_event |
    Changed e..  |   .2084667   .0419358     4.97   0.000     .1262741    .2906593
    Changed e..  |  -.0005936   .0761938    -0.01   0.994    -.1499307    .1487436
    Changed e..  |   .0600634   .0607583     0.99   0.323    -.0590208    .1791475
    Changed j..  |  -.0998616   .0386601    -2.58   0.010     -.175634   -.0240893
    Changed j..  |   .2207144   .1614364     1.37   0.172    -.0956951     .537124
    Changed j..  |   .1026248   .0714939     1.44   0.151    -.0375006    .2427503
                 |
          qfedhi |
    first deg..  |   .0254113   .0796304     0.32   0.750    -.1306614     .181484
    teaching qf  |   .0416455   .1210283     0.34   0.731    -.1955655    .2788566
    other hig..  |    .328927   .0763287     4.31   0.000     .1793256    .4785284
     nursing qf  |   .3529244   .1223951     2.88   0.004     .1130345    .5928144
    gce a lev..  |   .4723285   .0802419     5.89   0.000     .3150572    .6295997
    gce o lev..  |   .4268029   .0791424     5.39   0.000     .2716867    .5819191
    commercia..  |   .4118384    .120123     3.43   0.001     .1764017    .6472751
    cse grade..  |   .4287832   .0931371     4.60   0.000     .2462379    .6113285
    apprentic~p  |   .3439612   .1689428     2.04   0.042     .0128395    .6750829
       other qf  |   .2192476   .1771439     1.24   0.216     -.127948    .5664432
          no qf  |     .40117   .0831582     4.82   0.000     .2381829     .564157
    still at ..  |   -.158634   .2564787    -0.62   0.536    -.6613231    .3440551
                 |
             age |  -.0002758   .0011466    -0.24   0.810     -.002523    .0019715
                 |
           child |
              1  |  -.0200702   .0296272    -0.68   0.498    -.0781385    .0379981
              2  |   .0165892   .0318352     0.52   0.602    -.0458067    .0789851
              3  |  -.1034556   .0521423    -1.98   0.047    -.2056526   -.0012586
                 |
            wave |   .0196952   .0022694     8.68   0.000     .0152472    .0241433
    -------------+----------------------------------------------------------------
           /cut1 |   4.484099   .1027336                      4.282745    4.685454
           /cut2 |   5.326011   .1035509                      5.123055    5.528967
    ------------------------------------------------------------------------------
    
    . 
    end of do-file
    
    . do "C:\Users\ADMINI~1.ADM\AppData\Local\Temp\STD10000000.tmp"
    The basic effects of M_event remain the same, with some differences in significance. However, the Brant test looks different.

    Code:
    . brant
    
    Brant test of parallel regression assumption
    
                  |       chi2     p>chi2      df
     -------------+------------------------------
              All |     746.32      0.000      28
     -------------+------------------------------
      ljbsat7mini |      36.81      0.000       1
            jbsat |     220.93      0.000       1
          1.skill |       0.12      0.724       1
            2.sex |     207.98      0.000       1
      0.permanent |       0.79      0.373       1
        2.M_event |       0.55      0.457       1
        3.M_event |       1.33      0.249       1
        4.M_event |       0.85      0.356       1
        5.M_event |       0.07      0.796       1
        6.M_event |       1.25      0.264       1
        7.M_event |       0.36      0.549       1
         2.qfedhi |       0.02      0.894       1
         3.qfedhi |       0.99      0.321       1
         4.qfedhi |       0.87      0.352       1
         5.qfedhi |       1.10      0.295       1
         6.qfedhi |       1.77      0.183       1
         7.qfedhi |       5.15      0.023       1
         8.qfedhi |       0.27      0.606       1
         9.qfedhi |       2.93      0.087       1
        10.qfedhi |       0.56      0.453       1
        11.qfedhi |       8.91      0.003       1
        12.qfedhi |       1.25      0.263       1
        13.qfedhi |       0.33      0.563       1
              age |      52.54      0.000       1
          1.child |       0.79      0.375       1
          2.child |       8.07      0.004       1
          3.child |       3.98      0.046       1
             wave |      18.29      0.000       1
    
    A significant test statistic provides evidence that the parallel
    regression assumption has been violated.
    
    . 
    end of do-file
    The mobility events no longer violate the proportional odds assumption. Would I get away with this, or am I ignoring wider issues with the data?

  • #2
    You have 76,000 observations, so you should not be surprised that you find statistically significant results. In such datasets the more important question, especially when it comes to model choice, is whether the differences you find are substantively significant. This means just looking at the coefficients of the unconstrained model and judging whether the differences are important or not. You can get a fair approximation of the unconstrained coefficients by adding the detail option to brant. If you find some substantively significant differences, than you can relax the proportional odds assumptions for just those variables with Rich William's gologit2 (available from SSC).
    ---------------------------------
    Maarten L. Buis
    University of Konstanz
    Department of history and sociology
    box 40
    78457 Konstanz
    Germany
    http://www.maartenbuis.nl
    ---------------------------------

    Comment


    • #3
      Thanks for your answer Martin,

      The dataset is really large, I'm worried about this myself. Specificaly because it's a panel which I'm estimating with cross-sectional techniques, but I'll move on to FE later. Anyway.

      Am I right in thinking I should compare the estimated coefficients from binary logits?

      Code:
      . brant, detail
      
      Estimated coefficients from binary logits
      
      --------------------------------------------------------------------------------
          Variable |  y_gt_1     y_gt_2     y_gt_3     y_gt_4     y_gt_5     y_gt_6   
      -------------+------------------------------------------------------------------
           ljbsat7 |    0.548      0.566      0.601      0.583      0.559      0.587  
                   |    29.35      46.46      76.26      81.44      79.08      47.52  
             jbsat |    0.766      0.722      0.591      0.692      0.757      1.124  
                   |    39.83      57.74      70.10      85.56      84.22      62.28  
                   |
             skill |
          skilled  |   -0.085     -0.160     -0.214     -0.206     -0.221     -0.239  
                   |    -1.26      -3.77      -8.31      -9.30     -11.40      -8.65  
                   |
               sex |
           female  |   -0.019      0.022     -0.105      0.176      0.127      0.281  
                   |    -0.29       0.52      -4.15       8.15       6.87      11.03  
                   |
         permanent |
        Temporary  |   -0.108     -0.007      0.108      0.168      0.273      0.191  
                   |    -0.57      -0.05       1.34       2.39       4.59       2.61  
                   |
           M_event |
      Changed e..  |   -0.014      0.055      0.258      0.280      0.355      0.447  
                   |    -0.10       0.66       5.14       6.69      10.22      10.44  
      Changed e..  |   -0.513     -0.202     -0.019      0.027      0.063      0.346  
                   |    -2.69      -1.49      -0.21       0.34       0.93       3.82  
      Changed e..  |   -0.557     -0.189      0.070      0.112      0.196      0.338  
                   |    -3.70      -1.77       1.00       1.84       3.70       4.89  
      Changed j..  |   -0.189     -0.151     -0.087     -0.090     -0.025     -0.106  
                   |    -1.43      -1.88      -1.84      -2.24      -0.71      -2.13  
      Changed j..  |   -0.237      0.308      0.081      0.240     -0.107     -0.405  
                   |    -0.64       1.07       0.46       1.53      -0.79      -1.85  
      Changed j..  |    0.097      0.117      0.068      0.122      0.100      0.138  
                   |     0.46       0.86       0.83       1.70       1.58       1.54  
                   |
            qfedhi |
      first deg..  |   -0.035     -0.087      0.052      0.040      0.067      0.033  
                   |    -0.19      -0.80       0.84       0.71       1.28       0.39  
      teaching qf  |   -0.434     -0.188      0.091      0.137      0.112     -0.161  
                   |    -1.92      -1.27       1.01       1.67       1.49      -1.43  
      other hig..  |    0.118      0.101      0.413      0.350      0.153      0.155  
                   |     0.67       0.96       6.90       6.55       3.07       1.94  
       nursing qf  |    1.269      0.360      0.450      0.330      0.194      0.080  
                   |     2.35       1.53       3.62       3.09       2.12       0.65  
      gce a lev..  |    0.404      0.362      0.582      0.494      0.233      0.189  
                   |     2.05       3.08       8.79       8.48       4.38       2.25  
      gce o lev..  |    0.208      0.258      0.560      0.431      0.205      0.176  
                   |     1.13       2.31       8.85       7.69       3.98       2.16  
      commercia..  |   -0.261      0.031      0.425      0.439      0.242      0.458  
                   |    -0.94       0.17       4.02       4.71       3.08       4.45  
      cse grade..  |    0.182      0.209      0.567      0.431      0.196      0.228  
                   |     0.77       1.43       6.58       5.86       2.99       2.34  
      apprentic~p  |   -0.048     -0.082      0.351      0.378      0.494      0.373  
                   |    -0.16      -0.42       2.69       3.22       4.62       2.66  
         other qf  |   -0.804     -0.460      0.148      0.413      0.164      0.163  
                   |    -2.44      -1.92       0.90       2.70       1.24       0.92  
            no qf  |   -0.418     -0.227      0.425      0.446      0.262      0.377  
                   |    -2.25      -1.97       6.23       7.33       4.74       4.50  
      still at ..  |   -1.433     -0.651     -0.003     -0.228      0.175      0.213  
                   |    -2.35      -1.28      -0.01      -0.67       0.53       0.39  
                   |
               age |   -0.001      0.001     -0.007      0.000      0.006      0.007  
                   |    -0.17       0.37      -5.92       0.12       7.35       6.61  
                   |
             child |
                1  |    0.023      0.092     -0.036     -0.013     -0.072      0.025  
                   |     0.26       1.66      -1.11      -0.49      -3.05       0.78  
                2  |   -0.142     -0.011     -0.033      0.030      0.041      0.078  
                   |    -1.62      -0.20      -0.97       1.05       1.66       2.38  
                3  |   -0.165     -0.200     -0.174     -0.091     -0.082      0.000  
                   |    -1.10      -2.21      -3.16      -1.92      -2.00       0.01  
                   |
           jbsize1 |
                1  |   -0.226     -0.208     -0.189     -0.135     -0.076      0.031  
                   |    -2.60      -3.84      -5.86      -4.92      -3.22       0.95  
                2  |   -0.167     -0.104     -0.040     -0.019     -0.030     -0.065  
                   |    -1.74      -1.71      -1.08      -0.61      -1.12      -1.67  
                   |
              wave |    0.047      0.025      0.015      0.025      0.008     -0.026  
                   |     6.92       5.69       5.62      11.21       4.23     -10.23  
             _cons |   -1.895     -2.995     -4.106     -5.889     -7.415    -12.037  
                   |    -7.66     -19.01     -41.97     -65.20     -84.00     -78.31  
      --------------------------------------------------------------------------------
                                                                           legend: b/t

      Comment


      • #4
        A large sample size is in itself not something to worry about; it just means that statistical tests are less useful (though strictly speaking still correct). The panel structure is something to worry about.

        To answer your question: yes. So female would be a variable that changes noticebly.
        ---------------------------------
        Maarten L. Buis
        University of Konstanz
        Department of history and sociology
        box 40
        78457 Konstanz
        Germany
        http://www.maartenbuis.nl
        ---------------------------------

        Comment

        Working...
        X