Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • xtabond

    Dear all,

    I have run a GMM reggresion for GDP/capita. The syntax is xtabond2 y l.y x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66, gmmstyle (y x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x39 x40 x41 x42 x44 x53 x54 x55, lag (2 2)) ivstyle(x2 x3 x37 x45 x47 x48 x49 x51 x52 x56 x59 x61 x62 x63 x64 x65 x66) h(1) nolevel small robust

    If I do not separate the vars into exogenous and endogenous like in the following syntax (xtabond2 y l.y x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66, gmmstyle (y x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66, lag (2 2)) ivstyle(x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66) h(1) nolevel small robust), the result are the same.

    x61 to x66 are dummy variables (corruption vars) and the rest are dependent vars. I separated the vars to exogenous and endogenous. My questions is if the chi2 = 0.00 Prob > chi2 = 1.000 is considered a problem?


    The result are:

    Code:
    xtabond2 y l.y x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x
    > 30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59, gmmstyle (y x6
    >  x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x39 x40 x41 x42 
    > x44 x53 x54 x55, lag (2 2)) ivstyle(x2 x3 x37 x45 x47 x48 x49 x51 x52 x56 x59) h(1) noleve
    > l small robust
    Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
    Warning: Number of instruments may be large relative to number of observations.
    Warning: Two-step estimated covariance matrix of moments is singular.
      Using a generalized inverse to calculate robust weighting matrix for Hansen test.
      Difference-in-Sargan statistics may be negative.
    
    Dynamic panel-data estimation, one-step difference GMM
    ------------------------------------------------------------------------------
    Group variable: Tara                            Number of obs      =       269
    Time variable : An                              Number of groups   =        25
    Number of instruments = 269                     Obs per group: min =         5
    F(40, 25)     =   1172.68                                      avg =     10.76
    Prob > F      =     0.000                                      max =        18
    ------------------------------------------------------------------------------
                 |               Robust
               y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
               y |
             L1. |   .2169156   .0872924     2.48   0.020     .0371335    .3966977
                 |
              x2 |   1.763842   .8359274     2.11   0.045     .0422175    3.485467
              x3 |   1.341619   1.087861     1.23   0.229    -.8988732    3.582111
              x6 |   .0853116   .0504325     1.69   0.103     -.018556    .1891792
              x7 |   .1518393   .0570802     2.66   0.013     .0342805    .2693981
              x8 |  -.0083792   .0100724    -0.83   0.413    -.0291236    .0123653
              x9 |   .0736717   .0422614     1.74   0.094    -.0133674    .1607108
             x10 |   .0211284   .0175226     1.21   0.239      -.01496    .0572169
             x11 |   .0082324   .0123007     0.67   0.509    -.0171014    .0335662
             x12 |  -.0430905   .0290536    -1.48   0.151    -.1029275    .0167465
             x14 |  -.0249491   .0281533    -0.89   0.384    -.0829318    .0330336
             x15 |   .0610217   .0585641     1.04   0.307    -.0595934    .1816368
             x16 |   .1525263   .0689312     2.21   0.036     .0105597    .2944928
             x17 |  -.0088577   .0113725    -0.78   0.443    -.0322797    .0145643
             x18 |   .0034085   .0253511     0.13   0.894     -.048803      .05562
             x19 |  -.0917675   .0531611    -1.73   0.097    -.2012548    .0177198
             x20 |   .0034769   .0516854     0.07   0.947    -.1029713    .1099251
             x21 |   .0807322   .0558379     1.45   0.161    -.0342681    .1957325
             x22 |  -.0493855   .0792753    -0.62   0.539     -.212656    .1138851
             x23 |  -.1820333   .0890977    -2.04   0.052    -.3655335    .0014669
             x25 |  -.0037304   .0037948    -0.98   0.335    -.0115459    .0040851
             x30 |   .4657131   .2606787     1.79   0.086    -.0711648    1.002591
             x31 |  -.1971071   .1993695    -0.99   0.332    -.6077163    .2135021
             x37 |   .0528869   .0373159     1.42   0.169    -.0239667    .1297405
             x39 |   .9220377   .1833898     5.03   0.000     .5443394    1.299736
             x40 |   .0547753    .043517     1.26   0.220    -.0348496    .1444001
             x41 |  -.0121452   .0356404    -0.34   0.736     -.085548    .0612575
             x42 |   .0548113   .0336279     1.63   0.116    -.0144467    .1240693
             x44 |   .0014707   .0019434     0.76   0.456    -.0025318    .0054732
             x45 |  -.0731522   .1603179    -0.46   0.652    -.4033332    .2570288
             x47 |  -.1521028   .1869272    -0.81   0.423    -.5370865    .2328808
             x48 |  -.0401248   .0969941    -0.41   0.683    -.2398879    .1596383
             x49 |   .0952911    .163293     0.58   0.565     -.241017    .4315993
             x51 |   .0699631   .1811904     0.39   0.703    -.3032055    .4431317
             x52 |   .2812747   .1185909     2.37   0.026     .0370321    .5255173
             x53 |   .1592385   1.178386     0.14   0.894    -2.267692    2.586169
             x54 |   .3641102   1.222012     0.30   0.768    -2.152671    2.880892
             x55 |  -.5609728   2.392085    -0.23   0.816    -5.487564    4.365619
             x56 |  -.0219328   .0208032    -1.05   0.302    -.0647778    .0209122
             x59 |   .1772366   .1567788     1.13   0.269    -.1456555    .5001286
    ------------------------------------------------------------------------------
    Instruments for first differences equation
      Standard
        D.(x2 x3 x37 x45 x47 x48 x49 x51 x52 x56 x59)
      GMM-type (missing=0, separate instruments for each period unless collapsed)
        L2.(y x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25
        x30 x31 x39 x40 x41 x42 x44 x53 x54 x55)
    ------------------------------------------------------------------------------
    Arellano-Bond test for AR(1) in first differences: z =  -1.62  Pr > z =  0.105
    Arellano-Bond test for AR(2) in first differences: z =  -0.80  Pr > z =  0.426
    ------------------------------------------------------------------------------
    Sargan test of overid. restrictions: chi2(229)  = 269.00  Prob > chi2 =  0.036
      (Not robust, but not weakened by many instruments.)
    Hansen test of overid. restrictions: chi2(229)  =   0.00  Prob > chi2 =  1.000
      (Robust, but can be weakened by many instruments.)
    
    Difference-in-Hansen tests of exogeneity of instrument subsets:
      iv(x2 x3 x37 x45 x47 x48 x49 x51 x52 x56 x59)
        Hansen test excluding group:     chi2(227)  =   0.00  Prob > chi2 =  1.000
        Difference (null H = exogenous): chi2(2)    =   0.00  Prob > chi2 =  1.000
    Thank you

  • #2
    Yes, this does not look good. I think the main problem is that this regression is trying to identify 59 parameters with only 259 observations. And in a sense the sample size is 25, since that's the number of clusters. You'll need to drastically simplify the model or get much more data.

    Comment


    • #3
      Dear Mr. Roodman,

      Thank you for your reply. I am trying to analyze GDP/capita in the EU. The problem is that some variables have many missing values. The total number of observations for 28 countries is 700. I applied random effects, OLS, and FGLS. And now I want to apply GMM and system GMM following your paper from 2009 - xtabond2.Some of my initial variables were not stationary so i chose to use a difference model for the OLS, REM and FGLS. I think I should exclude some vars with not to many observations or find data from other sources. For example x44 is FDI in the EU and it has not to many observations. If i D.x44 manual i get diff x44 =354 obs. I do not understand in GMM and FGLS how the 269 observations are computed, but maybe the programs is dropping more observations.

      Code:
      y                 686
      y2                686
      x1                638
      x2                638
      x3                638
      x4                672
      x5                672
      x6                672
      x7                672
      x8                672
      x9                672
      x10               672
      x11               495
      x12               535
      x13               478
      x14               479
      x15               479
      x16               479
      x17               479
      x18               479
      x19               479
      x20               479
      x21               479
      x22               479
      x23               479
      x24               537
      x25               591
      x26               558
      x27               558
      x28               503
      x29               577
      x30               580
      x31               580
      x32               571
      x33               571
      x34               604
      x35               604
      x36               604
      x37               499
      x38               499
      x39               504
      x40               470
      x41               479
      x42               470
      x43               489
      x44               382
      x45               544
      x46               544
      x47               540
      x48               540
      x49               544
      x50               544
      x51               540
      x52               540
      x53               658
      x54               658
      x55               658
      x56               697
      x57               651
      x58               674
      x59               651
      x60               700
      x61               700
      x62               700
      x63               700
      x64               700
      x65               700
      x66               700
      x67               700
      x68               700
      x69               700
      x70               700
      x71               700
      Code:
      Cross-sectional time-series FGLS regression
      
      Coefficients:  generalized least squares
      Panels:        heteroskedastic
      Correlation:   panel-specific AR(1)
      
      Estimated covariances      =        25          Number of obs      =       269
      Estimated autocorrelations =        25          Number of groups   =        25
      Estimated coefficients     =        46          Obs per group: min =         5
                                                                     avg =     10.76
                                                                     max =        18
                                                      Wald chi2(45)      =   1252.90
                                                      Prob > chi2        =    0.0000
      
      ------------------------------------------------------------------------------
               D.y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
      -------------+----------------------------------------------------------------
              lagy |
               D1. |   .3297437   .0437736     7.53   0.000     .2439491    .4155383
                   |
                x2 |
               D1. |   .7158923   .5997666     1.19   0.233    -.4596288    1.891413
                   |
                x3 |
               D1. |   .4371374    .591605     0.74   0.460    -.7223871    1.596662
                   |
                x6 |
               D1. |   .0508773   .0244042     2.08   0.037     .0030459    .0987087
                   |
                x7 |
               D1. |   .1864415   .0419398     4.45   0.000      .104241     .268642
                   |
                x8 |
               D1. |  -.0004122   .0063883    -0.06   0.949    -.0129329    .0121086
                   |
                x9 |
               D1. |   .0243428   .0216716     1.12   0.261    -.0181327    .0668184
                   |
               x10 |
               D1. |   .0150115   .0136268     1.10   0.271    -.0116965    .0417195
                   |
               x11 |
               D1. |   .0026717   .0063976     0.42   0.676    -.0098674    .0152108
                   |
               x12 |
               D1. |  -.0343917   .0194409    -1.77   0.077    -.0724951    .0037117
                   |
               x14 |
               D1. |  -.0141555    .020193    -0.70   0.483     -.053733     .025422
                   |
               x15 |
               D1. |   .0261721   .0296117     0.88   0.377    -.0318658      .08421
                   |
               x16 |
               D1. |   .0467368    .046783     1.00   0.318    -.0449562    .1384298
                   |
               x17 |
               D1. |   -.007939   .0090113    -0.88   0.378    -.0256008    .0097228
                   |
               x18 |
               D1. |  -.0178294   .0206263    -0.86   0.387    -.0582561    .0225973
                   |
               x19 |
               D1. |  -.0419911   .0210226    -2.00   0.046    -.0831948   -.0007875
                   |
               x20 |
               D1. |  -.0094156   .0384847    -0.24   0.807    -.0848442    .0660131
                   |
               x21 |
               D1. |   .0373797   .0331395     1.13   0.259    -.0275726     .102332
                   |
               x22 |
               D1. |   .0077154   .0516697     0.15   0.881    -.0935554    .1089861
                   |
               x23 |
               D1. |  -.1407818   .0664359    -2.12   0.034    -.2709938   -.0105699
                   |
               x25 |
               D1. |  -.0026657   .0029174    -0.91   0.361    -.0083838    .0030523
                   |
               x30 |
               D1. |   .3796946   .1517552     2.50   0.012     .0822598    .6771294
                   |
               x31 |
               D1. |  -.1257983   .1348218    -0.93   0.351    -.3900441    .1384476
                   |
               x37 |
               D1. |   .0030966   .0331344     0.09   0.926    -.0618455    .0680388
                   |
               x39 |
               D1. |   .7089017   .0927532     7.64   0.000     .5271089    .8906946
                   |
               x40 |
               D1. |   .0136318   .0305939     0.45   0.656    -.0463312    .0735948
                   |
               x41 |
               D1. |   -.007365   .0252713    -0.29   0.771    -.0568959    .0421658
                   |
               x42 |
               D1. |   .0258875   .0156358     1.66   0.098    -.0047581    .0565332
                   |
               x44 |
               D1. |    .000165   .0012028     0.14   0.891    -.0021926    .0025225
                   |
               x45 |
               D1. |  -.0236828   .1052052    -0.23   0.822    -.2298813    .1825156
                   |
               x47 |
               D1. |   .0252652     .12265     0.21   0.837    -.2151243    .2656548
                   |
               x48 |
               D1. |   .0337807   .0693319     0.49   0.626    -.1021074    .1696687
                   |
               x49 |
               D1. |   .0804919   .1214458     0.66   0.507    -.1575375    .3185213
                   |
               x51 |
               D1. |  -.0093793   .1350375    -0.07   0.945     -.274048    .2552894
                   |
               x52 |
               D1. |   .0418684   .0809946     0.52   0.605    -.1168781    .2006149
                   |
               x53 |
               D1. |   .1214117   .5195958     0.23   0.815    -.8969773    1.139801
                   |
               x54 |
               D1. |   .2105994   .5564801     0.38   0.705    -.8800815     1.30128
                   |
               x55 |
               D1. |  -.3234769   1.061785    -0.30   0.761    -2.404538    1.757584
                   |
               x56 |
               D1. |  -.0039098   .0087243    -0.45   0.654    -.0210091    .0131896
                   |
               x59 |
               D1. |   .4912186   .1043113     4.71   0.000     .2867722     .695665
                   |
               x61 |
               D1. |          0  (omitted)
                   |
               x62 |
               D1. |  -.0069115   .0071723    -0.96   0.335    -.0209689    .0071458
                   |
               x63 |
               D1. |  -.0406656   .0371264    -1.10   0.273    -.1134319    .0321008
                   |
               x64 |
               D1. |   -.074264     .03878    -1.92   0.055    -.1502714    .0017434
                   |
               x65 |
               D1. |   .0330452   .0590333     0.56   0.576     -.082658    .1487483
                   |
               x66 |
               D1. |   7.91e-06   .0218458     0.00   1.000     -.042809    .0428248
                   |
             _cons |   .0116455   .0031843     3.66   0.000     .0054044    .0178865
      ------------------------------------------------------------------------------
      Best regards,
      Boldeanu Teodor

      Comment


      • #4
        Dear All,

        I rewrote the regression with less variables and use x44 -FDI for EU 28 from the World Bank because it had more obs. Country = Tara , and year=An. x67 x68 x69 x70 are regional dummies so they are not differenced. Can I accept these results and I am asking more for GMM and system GMM. x61 x62 x63 x64 x65 x66 - corruption/governance dummies and the rest are FDI, exports, imports, life expectancy, public expenditures.

        The results for pooled OLS:
        Code:
        regress D.( y l.y x1 x5 x11 x12 x13 x25 x29 x37 x39 x34 x35 x36 x43 x44 x72 x74 x75 x60 x5
        > 8 x61 x62 x63 x64 x65 x66) x67 x68 x69 x70, vce(cluster Tara)
        note: _delete omitted because of collinearity
        
        Linear regression                                      Number of obs =     346
                                                               F( 24,    25) =       .
                                                               Prob > F      =       .
                                                               R-squared     =  0.7141
                                                               Root MSE      =  .03811
        
                                          (Std. Err. adjusted for 26 clusters in Tara)
        ------------------------------------------------------------------------------
                     |               Robust
                 D.y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
        -------------+----------------------------------------------------------------
                   y |
                 LD. |   .1100653   .0590369     1.86   0.074    -.0115235    .2316542
                     |
                  x1 |
                 D1. |   .6434732    .651405     0.99   0.333    -.6981205    1.985067
                     |
                  x5 |
                 D1. |   .1677418   .0581776     2.88   0.008     .0479229    .2875607
                     |
                 x11 |
                 D1. |   .0063159   .0107269     0.59   0.561    -.0157767    .0284084
                     |
                 x12 |
                 D1. |  -.0823547   .0325927    -2.53   0.018    -.1494806   -.0152288
                     |
                 x13 |
                 D1. |  -.0006216   .0359989    -0.02   0.986    -.0747628    .0735195
                     |
                 x25 |
                 D1. |   .0027414   .0037513     0.73   0.472    -.0049845    .0104674
                     |
                 x29 |
                 D1. |   .5908789     .15842     3.73   0.001     .2646068     .917151
                     |
                 x37 |
                 D1. |  -.0007256   .0353322    -0.02   0.984    -.0734936    .0720425
                     |
                 x39 |
                 D1. |   .8957163   .1253626     7.15   0.000     .6375272    1.153905
                     |
                 x34 |
                 D1. |  -1.050368   1.263177    -0.83   0.414     -3.65193    1.551195
                     |
                 x35 |
                 D1. |  -.6691491   1.331956    -0.50   0.620    -3.412364    2.074066
                     |
                 x36 |
                 D1. |    1.58439    2.57084     0.62   0.543    -3.710354    6.879134
                     |
                 x43 |
                 D1. |   .0629043   .0488437     1.29   0.210    -.0376913    .1634998
                     |
                 x44 |
                 D1. |   .0019331   .0018154     1.06   0.297    -.0018057    .0056719
                     |
                 x72 |
                 D1. |   .1062295   .0695627     1.53   0.139    -.0370375    .2494965
                     |
                 x74 |
                 D1. |   .1220312   .1083712     1.13   0.271    -.1011634    .3452258
                     |
                 x75 |
                 D1. |   .1270361   .0549198     2.31   0.029     .0139266    .2401455
                     |
                 x60 |
                 D1. |   -1.14565   .2854147    -4.01   0.000    -1.733473   -.5578279
                     |
                 x58 |
                 D1. |    .018721   .0041685     4.49   0.000     .0101357    .0273063
                     |
                 x61 |
                 D1. |          0  (omitted)
                     |
                 x62 |
                 D1. |  -.0020865   .0121996    -0.17   0.866     -.027212    .0230391
                     |
                 x63 |
                 D1. |  -.0772659   .0063697   -12.13   0.000    -.0903846   -.0641472
                     |
                 x64 |
                 D1. |  -.0669745   .0076792    -8.72   0.000    -.0827902   -.0511588
                     |
                 x65 |
                 D1. |   .0406146   .0197756     2.05   0.051    -.0001141    .0813432
                     |
                 x66 |
                 D1. |   .0048972   .0055001     0.89   0.382    -.0064306     .016225
                     |
                 x67 |   .0065143   .0077352     0.84   0.408    -.0094167    .0224453
                 x68 |   -.009366   .0038756    -2.42   0.023    -.0173479   -.0013842
                 x69 |  -.0119422    .005978    -2.00   0.057    -.0242542    .0003698
                 x70 |  -.0210851   .0054728    -3.85   0.001    -.0323565   -.0098137
               _cons |   .0360367   .0060042     6.00   0.000     .0236708    .0484026
        ------------------------------------------------------------------------------
        The results for REM :
        Code:
        xtreg D.( y l.y x1 x5 x11 x12 x13 x25 x29 x37 x39 x34 x35 x36 x43 x44 x72 x74 x75 x60 x58 
        > x61 x62 x63 x64 x65 x66) x67 x68 x69 x70, re vce(cluster )
        note: D.x61 omitted because of collinearity
        
        Random-effects GLS regression                   Number of obs      =       346
        Group variable: Tara                            Number of groups   =        26
        
        R-sq:  within  = 0.6719                         Obs per group: min =         7
               between = 0.9179                                        avg =      13.3
               overall = 0.7141                                        max =        18
        
                                                        Wald chi2(25)      =         .
        corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =         .
        
                                          (Std. Err. adjusted for 26 clusters in Tara)
        ------------------------------------------------------------------------------
                     |               Robust
                 D.y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        -------------+----------------------------------------------------------------
                   y |
                 LD. |   .1100653   .0590369     1.86   0.062    -.0056449    .2257756
                     |
                  x1 |
                 D1. |   .6434732    .651405     0.99   0.323    -.6332571    1.920204
                     |
                  x5 |
                 D1. |   .1677418   .0581776     2.88   0.004     .0537159    .2817677
                     |
                 x11 |
                 D1. |   .0063159   .0107269     0.59   0.556    -.0147085    .0273403
                     |
                 x12 |
                 D1. |  -.0823547   .0325927    -2.53   0.012    -.1462352   -.0184742
                     |
                 x13 |
                 D1. |  -.0006216   .0359989    -0.02   0.986    -.0711782    .0699349
                     |
                 x25 |
                 D1. |   .0027414   .0037513     0.73   0.465     -.004611    .0100939
                     |
                 x29 |
                 D1. |   .5908789     .15842     3.73   0.000     .2803814    .9013764
                     |
                 x37 |
                 D1. |  -.0007256   .0353322    -0.02   0.984    -.0699754    .0685243
                     |
                 x39 |
                 D1. |   .8957163   .1253626     7.15   0.000     .6500102    1.141422
                     |
                 x34 |
                 D1. |  -1.050368   1.263177    -0.83   0.406     -3.52615    1.425414
                     |
                 x35 |
                 D1. |  -.6691491   1.331956    -0.50   0.615    -3.279735    1.941437
                     |
                 x36 |
                 D1. |    1.58439    2.57084     0.62   0.538    -3.454364    6.623144
                     |
                 x43 |
                 D1. |   .0629043   .0488437     1.29   0.198    -.0328277    .1586362
                     |
                 x44 |
                 D1. |   .0019331   .0018154     1.06   0.287     -.001625    .0054911
                     |
                 x72 |
                 D1. |   .1062295   .0695627     1.53   0.127    -.0301109    .2425698
                     |
                 x74 |
                 D1. |   .1220312   .1083712     1.13   0.260    -.0903724    .3344348
                     |
                 x75 |
                 D1. |   .1270361   .0549198     2.31   0.021     .0193953    .2346769
                     |
                 x60 |
                 D1. |   -1.14565   .2854147    -4.01   0.000    -1.705053   -.5862479
                     |
                 x58 |
                 D1. |    .018721   .0041685     4.49   0.000     .0105508    .0268912
                     |
                 x61 |
                 D1. |          0  (omitted)
                     |
                 x62 |
                 D1. |  -.0020865   .0121996    -0.17   0.864    -.0259972    .0218243
                     |
                 x63 |
                 D1. |  -.0772659   .0063697   -12.13   0.000    -.0897504   -.0647814
                     |
                 x64 |
                 D1. |  -.0669745   .0076792    -8.72   0.000    -.0820256   -.0519235
                     |
                 x65 |
                 D1. |   .0406146   .0197756     2.05   0.040      .001855    .0793741
                     |
                 x66 |
                 D1. |   .0048972   .0055001     0.89   0.373    -.0058829    .0156773
                     |
                 x67 |   .0065143   .0077352     0.84   0.400    -.0086464    .0216751
                 x68 |   -.009366   .0038756    -2.42   0.016     -.016962   -.0017701
                 x69 |  -.0119422    .005978    -2.00   0.046    -.0236589   -.0002254
                 x70 |  -.0210851   .0054728    -3.85   0.000    -.0318115   -.0103587
               _cons |   .0360367   .0060042     6.00   0.000     .0242687    .0478048
        -------------+----------------------------------------------------------------
             sigma_u |          0
             sigma_e |  .03802164
                 rho |          0   (fraction of variance due to u_i)
        ------------------------------------------------------------------------------

        The result for the FGLS:
        Code:
        xtgls D.(y l.y x1 x5 x11 x12 x13 x25 x29 x37 x39 x34 x35 x36 x43 x44 x72 x74 x75 x60 x58 x
        > 61 x62 x63 x64 x65 x66) x67 x68 x69 x70, panels(heterosk) corr(psar1) nolog force
        note: D.x61 omitted because of collinearity
        
        Cross-sectional time-series FGLS regression
        
        Coefficients:  generalized least squares
        Panels:        heteroskedastic
        Correlation:   panel-specific AR(1)
        
        Estimated covariances      =        26          Number of obs      =       346
        Estimated autocorrelations =        26          Number of groups   =        26
        Estimated coefficients     =        30          Obs per group: min =         7
                                                                       avg =  13.30769
                                                                       max =        18
                                                        Wald chi2(29)      =   1362.70
                                                        Prob > chi2        =    0.0000
        
        ------------------------------------------------------------------------------
                 D.y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        -------------+----------------------------------------------------------------
                   y |
                 LD. |    .191518   .0363719     5.27   0.000     .1202303    .2628057
                     |
                  x1 |
                 D1. |   .0462046   .3536067     0.13   0.896    -.6468518    .7392611
                     |
                  x5 |
                 D1. |   .1405378   .0315644     4.45   0.000     .0786726    .2024029
                     |
                 x11 |
                 D1. |   .0023223   .0059271     0.39   0.695    -.0092947    .0139392
                     |
                 x12 |
                 D1. |  -.0820348   .0143313    -5.72   0.000    -.1101237    -.053946
                     |
                 x13 |
                 D1. |   .0229839   .0315902     0.73   0.467    -.0389319    .0848996
                     |
                 x25 |
                 D1. |   .0009989   .0022256     0.45   0.654    -.0033632    .0053611
                     |
                 x29 |
                 D1. |   .4545096   .0875015     5.19   0.000     .2830099    .6260094
                     |
                 x37 |
                 D1. |   -.025748   .0266826    -0.96   0.335    -.0780449    .0265489
                     |
                 x39 |
                 D1. |   .8122137    .075271    10.79   0.000     .6646853    .9597422
                     |
                 x34 |
                 D1. |  -.4619149    .447041    -1.03   0.301    -1.338099    .4142695
                     |
                 x35 |
                 D1. |   -.362069   .4704766    -0.77   0.442    -1.284186    .5600483
                     |
                 x36 |
                 D1. |   .7614582   .9029828     0.84   0.399    -1.008356    2.531272
                     |
                 x43 |
                 D1. |   .1183528   .0351762     3.36   0.001     .0494088    .1872969
                     |
                 x44 |
                 D1. |   .0002174   .0009264     0.23   0.814    -.0015984    .0020332
                     |
                 x72 |
                 D1. |   .0557545   .0433782     1.29   0.199    -.0292653    .1407742
                     |
                 x74 |
                 D1. |   .1019539   .0558087     1.83   0.068    -.0074292     .211337
                     |
                 x75 |
                 D1. |   .0513587   .0217057     2.37   0.018     .0088162    .0939011
                     |
                 x60 |
                 D1. |  -.6661983   .1973964    -3.37   0.001    -1.053088   -.2793084
                     |
                 x58 |
                 D1. |   .0155854   .0027403     5.69   0.000     .0102145    .0209564
                     |
                 x61 |
                 D1. |          0  (omitted)
                     |
                 x62 |
                 D1. |   .0054751   .0057679     0.95   0.343    -.0058298      .01678
                     |
                 x63 |
                 D1. |  -.0694168   .0441726    -1.57   0.116    -.1559934    .0171598
                     |
                 x64 |
                 D1. |  -.0698847   .0443347    -1.58   0.115    -.1567791    .0170097
                     |
                 x65 |
                 D1. |   .0250787    .028648     0.88   0.381    -.0310704    .0812279
                     |
                 x66 |
                 D1. |   .0079328   .0138737     0.57   0.567     -.019259    .0351247
                     |
                 x67 |   .0111448   .0092577     1.20   0.229        -.007    .0292895
                 x68 |  -.0036788   .0072886    -0.50   0.614    -.0179643    .0106067
                 x69 |  -.0061806   .0077913    -0.79   0.428    -.0214513    .0090902
                 x70 |  -.0157322   .0072648    -2.17   0.030    -.0299711   -.0014934
               _cons |   .0304533   .0077716     3.92   0.000     .0152212    .0456853
        ------------------------------------------------------------------------------
        The results for the GMM and system GMM:
        Code:
        xtabond2 y l.y x1 x5 x11 x12 x13 x25 x29 x37 x39 x34 x35 x36 x43 x44 x72 x74 x75 x60 x58 x
        > 61 x62 x63 x64 x65 x66 x67 x68 x69 x70, gmm (l.y x1 x5 x13 x39 x43 x44 x34 x35 x36 x60 x58
        > , lag (2 2)) iv (x29 x11 x12 x25 x37 x72 x74 x75 x61 x62 x63 x64 x65 x66 x67 x68 x69 x70) 
        > nolevel robust small artests(4)
        Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
        x61 dropped due to collinearity
        x67 dropped due to collinearity
        x68 dropped due to collinearity
        x69 dropped due to collinearity
        x70 dropped due to collinearity
        Warning: Number of instruments may be large relative to number of observations.
        Warning: Two-step estimated covariance matrix of moments is singular.
          Using a generalized inverse to calculate robust weighting matrix for Hansen test.
          Difference-in-Sargan statistics may be negative.
        
        Dynamic panel-data estimation, one-step difference GMM
        ------------------------------------------------------------------------------
        Group variable: Tara                            Number of obs      =       346
        Time variable : An                              Number of groups   =        26
        Number of instruments = 210                     Obs per group: min =         7
        F(25, 26)     =   6276.66                                      avg =     13.31
        Prob > F      =     0.000                                      max =        18
        ------------------------------------------------------------------------------
                     |               Robust
                   y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
        -------------+----------------------------------------------------------------
                   y |
                 L1. |   .4901261   .0621589     7.89   0.000     .3623567    .6178955
                     |
                  x1 |    .253205   .7337297     0.35   0.733    -1.254998    1.761408
                  x5 |   .1470508   .0617049     2.38   0.025     .0202145     .273887
                 x11 |  -.0171997    .012944    -1.33   0.195    -.0438064     .009407
                 x12 |  -.0644261   .0302403    -2.13   0.043    -.1265859   -.0022663
                 x13 |  -.0574944   .0774709    -0.74   0.465    -.2167381    .1017494
                 x25 |   -.002194   .0054639    -0.40   0.691    -.0134251    .0090372
                 x29 |   .2707216   .1441777     1.88   0.072      -.02564    .5670832
                 x37 |   .0054907   .0405274     0.14   0.893    -.0778145    .0887958
                 x39 |   1.023042   .1593297     6.42   0.000     .6955351    1.350549
                 x34 |  -2.157519   1.177254    -1.83   0.078    -4.577399    .2623605
                 x35 |  -1.980887   1.209146    -1.64   0.113    -4.466323    .5045492
                 x36 |   4.108371   2.367045     1.74   0.094     -.757159    8.973901
                 x43 |   -.057414   .0582453    -0.99   0.333    -.1771389    .0623109
                 x44 |   .0057046   .0025636     2.23   0.035     .0004351     .010974
                 x72 |   .0245418   .0736561     0.33   0.742    -.1268604    .1759441
                 x74 |   .1199714   .1246682     0.96   0.345    -.1362877    .3762305
                 x75 |   .1641374   .0772463     2.12   0.043     .0053554    .3229194
                 x60 |  -.6240511   .2468779    -2.53   0.018    -1.131516   -.1165864
                 x58 |    .022054   .0061635     3.58   0.001     .0093847    .0347233
                 x62 |  -.0126382   .0201855    -0.63   0.537    -.0541301    .0288537
                 x63 |  -.0577877   .0330422    -1.75   0.092    -.1257068    .0101314
                 x64 |  -.1010796   .0197438    -5.12   0.000    -.1416636   -.0604956
                 x65 |   .0809928   .0464602     1.74   0.093    -.0145074     .176493
                 x66 |   .0027651    .011295     0.24   0.809    -.0204521    .0259822
        ------------------------------------------------------------------------------
        Instruments for first differences equation
          Standard
            D.(x29 x11 x12 x25 x37 x72 x74 x75 x61 x62 x63 x64 x65 x66 x67 x68 x69
            x70)
          GMM-type (missing=0, separate instruments for each period unless collapsed)
            L2.(L.y x1 x5 x13 x39 x43 x44 x34 x35 x36 x60 x58)
        ------------------------------------------------------------------------------
        Arellano-Bond test for AR(1) in first differences: z =  -3.09  Pr > z =  0.002
        Arellano-Bond test for AR(2) in first differences: z =  -0.85  Pr > z =  0.397
        Arellano-Bond test for AR(3) in first differences: z =   1.17  Pr > z =  0.241
        Arellano-Bond test for AR(4) in first differences: z =  -1.51  Pr > z =  0.130
        ------------------------------------------------------------------------------
        Sargan test of overid. restrictions: chi2(185)  = 329.28  Prob > chi2 =  0.000
          (Not robust, but not weakened by many instruments.)
        Hansen test of overid. restrictions: chi2(185)  =   1.22  Prob > chi2 =  1.000
          (Robust, but can be weakened by many instruments.)
        
        Difference-in-Hansen tests of exogeneity of instrument subsets:
          iv(x29 x11 x12 x25 x37 x72 x74 x75 x61 x62 x63 x64 x65 x66 x67 x68 x69 x70)
            Hansen test excluding group:     chi2(172)  =   0.77  Prob > chi2 =  1.000
            Difference (null H = exogenous): chi2(13)   =   0.45  Prob > chi2 =  1.000
        Code:
        xtabond2 y l.y x1 x5 x11 x12 x13 x25 x29 x37 x39 x34 x35 x36 x43 x44 x72 x74 x75 x60 x58 x
        > 61 x62 x63 x64 x65 x66 x67 x68 x69 x70, gmmstyle (l.y x1 x5 x13 x39 x43 x44 x34 x35 x36 x6
        > 0 x58, lag (2 2)) ivstyle (x29 x11 x12 x25 x37 x72 x74 x75 x61 x62 x63 x64 x65 x66 x67 x68
        >  x69 x70) robust small artests(4)
        Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
        x61 dropped due to collinearity
        x70 dropped due to collinearity
        Warning: Number of instruments may be large relative to number of observations.
        Warning: Two-step estimated covariance matrix of moments is singular.
          Using a generalized inverse to calculate robust weighting matrix for Hansen test.
          Difference-in-Sargan statistics may be negative.
        
        Dynamic panel-data estimation, one-step system GMM
        ------------------------------------------------------------------------------
        Group variable: Tara                            Number of obs      =       374
        Time variable : An                              Number of groups   =        26
        Number of instruments = 374                     Obs per group: min =         8
        F(28, 25)     =  3.02e+08                                      avg =     14.38
        Prob > F      =     0.000                                      max =        19
        ------------------------------------------------------------------------------
                     |               Robust
                   y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
        -------------+----------------------------------------------------------------
                   y |
                 L1. |   .8538447   .0412058    20.72   0.000     .7689797    .9387096
                     |
                  x1 |   .6410192   .2449977     2.62   0.015     .1364369    1.145601
                  x5 |   .0291983   .0143518     2.03   0.053    -.0003597    .0587563
                 x11 |  -.0182204   .0072545    -2.51   0.019    -.0331614   -.0032794
                 x12 |  -.0000505    .013546    -0.00   0.997     -.027949    .0278481
                 x13 |  -.1528715    .037906    -4.03   0.000    -.2309403   -.0748026
                 x25 |   .0080372   .0037374     2.15   0.041     .0003399    .0157344
                 x29 |   .0657851   .0652133     1.01   0.323    -.0685242    .2000945
                 x37 |  -.0390069   .0200342    -1.95   0.063    -.0802681    .0022543
                 x39 |   .1214827   .0270962     4.48   0.000      .065677    .1772884
                 x34 |  -1.297814   .7554975    -1.72   0.098     -2.85379    .2581625
                 x35 |  -.9499009   .7129256    -1.33   0.195    -2.418199    .5183969
                 x36 |   2.249813   1.454795     1.55   0.135    -.7463946     5.24602
                 x43 |  -.0054499   .0419959    -0.13   0.898     -.091942    .0810423
                 x44 |   .0029564    .002701     1.09   0.284    -.0026064    .0085192
                 x72 |   .0101259   .0363949     0.28   0.783    -.0648307    .0850826
                 x74 |   .0324934   .0223561     1.45   0.159    -.0135498    .0785366
                 x75 |  -.0151796   .0201096    -0.75   0.457     -.056596    .0262369
                 x60 |   -.028874   .0145588    -1.98   0.058    -.0588585    .0011104
                 x58 |   .0080893   .0066012     1.23   0.232    -.0055062    .0216847
                 x62 |   .0108437   .0096061     1.13   0.270    -.0089404    .0306278
                 x63 |   .0093651   .0118529     0.79   0.437    -.0150464    .0337765
                 x64 |  -.0739742    .020284    -3.65   0.001    -.1157499   -.0321986
                 x65 |    .080071   .0169826     4.71   0.000     .0450946    .1150473
                 x66 |   .0121758   .0060281     2.02   0.054    -.0002392    .0245908
                 x67 |   .0008655   .0168276     0.05   0.959    -.0337915    .0355225
                 x68 |   .0297641   .0135473     2.20   0.038      .001863    .0576653
                 x69 |  -.0078045   .0096155    -0.81   0.425     -.027608    .0119989
               _cons |  -2.629901   1.566791    -1.68   0.106    -5.856766    .5969649
        ------------------------------------------------------------------------------
        Instruments for first differences equation
          Standard
            D.(x29 x11 x12 x25 x37 x72 x74 x75 x61 x62 x63 x64 x65 x66 x67 x68 x69
            x70)
          GMM-type (missing=0, separate instruments for each period unless collapsed)
            L2.(L.y x1 x5 x13 x39 x43 x44 x34 x35 x36 x60 x58)
        Instruments for levels equation
          Standard
            _cons
            x29 x11 x12 x25 x37 x72 x74 x75 x61 x62 x63 x64 x65 x66 x67 x68 x69 x70
          GMM-type (missing=0, separate instruments for each period unless collapsed)
            DL.(L.y x1 x5 x13 x39 x43 x44 x34 x35 x36 x60 x58)
        ------------------------------------------------------------------------------
        Arellano-Bond test for AR(1) in first differences: z =  -3.00  Pr > z =  0.003
        Arellano-Bond test for AR(2) in first differences: z =  -2.54  Pr > z =  0.011
        Arellano-Bond test for AR(3) in first differences: z =   1.55  Pr > z =  0.122
        Arellano-Bond test for AR(4) in first differences: z =  -1.20  Pr > z =  0.231
        ------------------------------------------------------------------------------
        Sargan test of overid. restrictions: chi2(345)  = 464.57  Prob > chi2 =  0.000
          (Not robust, but not weakened by many instruments.)
        Hansen test of overid. restrictions: chi2(345)  =   0.00  Prob > chi2 =  1.000
          (Robust, but can be weakened by many instruments.)
        
        Difference-in-Hansen tests of exogeneity of instrument subsets:
          GMM instruments for levels
            Hansen test excluding group:     chi2(181)  =   0.00  Prob > chi2 =  1.000
            Difference (null H = exogenous): chi2(164)  =  -0.00  Prob > chi2 =  1.000
          iv(x29 x11 x12 x25 x37 x72 x74 x75 x61 x62 x63 x64 x65 x66 x67 x68 x69 x70)
            Hansen test excluding group:     chi2(328)  =   0.00  Prob > chi2 =  1.000
            Difference (null H = exogenous): chi2(17)   =   0.00  Prob > chi2 =  1.000
        Best regards,
        Teodor

        Comment

        Working...
        X