Dear all,
I have run a GMM reggresion for GDP/capita. The syntax is xtabond2 y l.y x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66, gmmstyle (y x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x39 x40 x41 x42 x44 x53 x54 x55, lag (2 2)) ivstyle(x2 x3 x37 x45 x47 x48 x49 x51 x52 x56 x59 x61 x62 x63 x64 x65 x66) h(1) nolevel small robust
If I do not separate the vars into exogenous and endogenous like in the following syntax (xtabond2 y l.y x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66, gmmstyle (y x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66, lag (2 2)) ivstyle(x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66) h(1) nolevel small robust), the result are the same.
x61 to x66 are dummy variables (corruption vars) and the rest are dependent vars. I separated the vars to exogenous and endogenous. My questions is if the chi2 = 0.00 Prob > chi2 = 1.000 is considered a problem?
The result are:
Thank you
I have run a GMM reggresion for GDP/capita. The syntax is xtabond2 y l.y x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66, gmmstyle (y x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x39 x40 x41 x42 x44 x53 x54 x55, lag (2 2)) ivstyle(x2 x3 x37 x45 x47 x48 x49 x51 x52 x56 x59 x61 x62 x63 x64 x65 x66) h(1) nolevel small robust
If I do not separate the vars into exogenous and endogenous like in the following syntax (xtabond2 y l.y x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66, gmmstyle (y x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66, lag (2 2)) ivstyle(x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59 x61 x62 x63 x64 x65 x66) h(1) nolevel small robust), the result are the same.
x61 to x66 are dummy variables (corruption vars) and the rest are dependent vars. I separated the vars to exogenous and endogenous. My questions is if the chi2 = 0.00 Prob > chi2 = 1.000 is considered a problem?
The result are:
Code:
xtabond2 y l.y x2 x3 x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x > 30 x31 x37 x39 x40 x41 x42 x44 x45 x47 x48 x49 x51 x52 x53 x54 x55 x56 x59, gmmstyle (y x6 > x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x39 x40 x41 x42 > x44 x53 x54 x55, lag (2 2)) ivstyle(x2 x3 x37 x45 x47 x48 x49 x51 x52 x56 x59) h(1) noleve > l small robust Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm. Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate robust weighting matrix for Hansen test. Difference-in-Sargan statistics may be negative. Dynamic panel-data estimation, one-step difference GMM ------------------------------------------------------------------------------ Group variable: Tara Number of obs = 269 Time variable : An Number of groups = 25 Number of instruments = 269 Obs per group: min = 5 F(40, 25) = 1172.68 avg = 10.76 Prob > F = 0.000 max = 18 ------------------------------------------------------------------------------ | Robust y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- y | L1. | .2169156 .0872924 2.48 0.020 .0371335 .3966977 | x2 | 1.763842 .8359274 2.11 0.045 .0422175 3.485467 x3 | 1.341619 1.087861 1.23 0.229 -.8988732 3.582111 x6 | .0853116 .0504325 1.69 0.103 -.018556 .1891792 x7 | .1518393 .0570802 2.66 0.013 .0342805 .2693981 x8 | -.0083792 .0100724 -0.83 0.413 -.0291236 .0123653 x9 | .0736717 .0422614 1.74 0.094 -.0133674 .1607108 x10 | .0211284 .0175226 1.21 0.239 -.01496 .0572169 x11 | .0082324 .0123007 0.67 0.509 -.0171014 .0335662 x12 | -.0430905 .0290536 -1.48 0.151 -.1029275 .0167465 x14 | -.0249491 .0281533 -0.89 0.384 -.0829318 .0330336 x15 | .0610217 .0585641 1.04 0.307 -.0595934 .1816368 x16 | .1525263 .0689312 2.21 0.036 .0105597 .2944928 x17 | -.0088577 .0113725 -0.78 0.443 -.0322797 .0145643 x18 | .0034085 .0253511 0.13 0.894 -.048803 .05562 x19 | -.0917675 .0531611 -1.73 0.097 -.2012548 .0177198 x20 | .0034769 .0516854 0.07 0.947 -.1029713 .1099251 x21 | .0807322 .0558379 1.45 0.161 -.0342681 .1957325 x22 | -.0493855 .0792753 -0.62 0.539 -.212656 .1138851 x23 | -.1820333 .0890977 -2.04 0.052 -.3655335 .0014669 x25 | -.0037304 .0037948 -0.98 0.335 -.0115459 .0040851 x30 | .4657131 .2606787 1.79 0.086 -.0711648 1.002591 x31 | -.1971071 .1993695 -0.99 0.332 -.6077163 .2135021 x37 | .0528869 .0373159 1.42 0.169 -.0239667 .1297405 x39 | .9220377 .1833898 5.03 0.000 .5443394 1.299736 x40 | .0547753 .043517 1.26 0.220 -.0348496 .1444001 x41 | -.0121452 .0356404 -0.34 0.736 -.085548 .0612575 x42 | .0548113 .0336279 1.63 0.116 -.0144467 .1240693 x44 | .0014707 .0019434 0.76 0.456 -.0025318 .0054732 x45 | -.0731522 .1603179 -0.46 0.652 -.4033332 .2570288 x47 | -.1521028 .1869272 -0.81 0.423 -.5370865 .2328808 x48 | -.0401248 .0969941 -0.41 0.683 -.2398879 .1596383 x49 | .0952911 .163293 0.58 0.565 -.241017 .4315993 x51 | .0699631 .1811904 0.39 0.703 -.3032055 .4431317 x52 | .2812747 .1185909 2.37 0.026 .0370321 .5255173 x53 | .1592385 1.178386 0.14 0.894 -2.267692 2.586169 x54 | .3641102 1.222012 0.30 0.768 -2.152671 2.880892 x55 | -.5609728 2.392085 -0.23 0.816 -5.487564 4.365619 x56 | -.0219328 .0208032 -1.05 0.302 -.0647778 .0209122 x59 | .1772366 .1567788 1.13 0.269 -.1456555 .5001286 ------------------------------------------------------------------------------ Instruments for first differences equation Standard D.(x2 x3 x37 x45 x47 x48 x49 x51 x52 x56 x59) GMM-type (missing=0, separate instruments for each period unless collapsed) L2.(y x6 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x25 x30 x31 x39 x40 x41 x42 x44 x53 x54 x55) ------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = -1.62 Pr > z = 0.105 Arellano-Bond test for AR(2) in first differences: z = -0.80 Pr > z = 0.426 ------------------------------------------------------------------------------ Sargan test of overid. restrictions: chi2(229) = 269.00 Prob > chi2 = 0.036 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(229) = 0.00 Prob > chi2 = 1.000 (Robust, but can be weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: iv(x2 x3 x37 x45 x47 x48 x49 x51 x52 x56 x59) Hansen test excluding group: chi2(227) = 0.00 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(2) = 0.00 Prob > chi2 = 1.000
Comment