Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Why Wald Ch2 and Prob>ch2 value are not reported for a random effect model with clustered errors?

    Hi members,

    I run a random effects model with standards errors cluster on my panel id. The ouput does not report any Wald Ch2 and Prob>ch2 values.

    Stata manauls says that "The VCE you have just estimated is does have not of sufficient rank to perform the model test", and indicates that, although estimated coefficients may be fine, I "need to consider carefully whether any of the reported standard errors mean anything".

    I am not quite sure what this means? Are estimated beta and SEs good enough for reporting or I need to explore an alternative model, see attached output?

    Can you please advice me on this?

    Thanks,
    mohamud

  • #2
    You are more likely to get a helpful answer is you show us the actual output. Copy it from the Results window (or your log file) and paste it into a code block on this forum in a new post on this thread [See FAQ if you don't know how to do this].

    Comment


    • #3
      Clyde- sorry, I tried to attach the output for some reason did not succeed. Here is my ouput:


      . xtreg PriceKg i.b2.cool branv packz prodc prodt Month retai, re vce(cluster SKUCode)

      Random-effects GLS regression Number of obs = 1009
      Group variable: SKUCode Number of groups = 19

      R-sq: within = 0.1684 Obs per group: min = 28
      between = 0.7066 avg = 53.1
      overall = 0.4162 max = 60

      Wald chi2(9) = .
      corr(u_i, X) = 0 (assumed) Prob > chi2 = .

      (Std. Err. adjusted for 19 clusters in SKUCode)

      Robust
      PriceKg Coef. Std. Err. z P>z [95% Conf. Interval]

      cool
      1 -.2862552 .8629927 -0.33 0.740 -1.97769 1.405179
      3 -.0438983 .7750043 -0.06 0.955 -1.562879 1.475082
      4 .9265256 .5208154 1.78 0.075 -.0942539 1.947305
      5 3.584071 .702803 5.10 0.000 2.206602 4.961539

      branv .6495303 .2859727 2.27 0.023 .0890341 1.210027
      packz .3103391 .1842407 1.68 0.092 -.0507661 .6714443
      prodc -2.360135 .8975332 -2.63 0.009 -4.119268 -.6010024
      prodt .3636645 .1571556 2.31 0.021 .0556452 .6716839
      Month .0501156 .0116846 4.29 0.000 .0272142 .073017
      retai -.6052335 .209236 -2.89 0.004 -1.015328 -.1951385
      _cons 4.756011 1.618619 2.94 0.003 1.583575 7.928447

      sigma_u 1.0284748
      sigma_e 2.0245792
      rho .20512425 (fraction of variance due to u_i)


      Comment


      • #4
        The usual cause of this error is that the number of coefficients in the model exceeds the number of clusters when using the cluster robust VCE. But you have 19 clusters, which is in theory enough to estimate 10 coefficients and a constant (although not enough that I'd place much confidence in the results). The other way this can happen is if there is a variable that only takes on non-zero values in a single cluster. One of the categories of the cool variable would be a good candidate for this problem. (Remember that what counts is how many values there are in the estimation sample: so additional non-zero observations when other model variables have a missing value don't help you here.) If you identify such a cluster, you might want to consider either excluding it from analysis, excluding the variable that the cluster is problematic for from the analysis, or combining that cluster with one of the other clusters--if there is a way to do so that doesn't do violence to the meaning of the clustering variable.

        Comment


        • #5
          Mohamud:
          pasting what you typed and what Stata gave you back in between code delimiters (#-icon among the options of the A-icon Advanced editor) will ease your attempt to post all the details you deem relevant for helpful replies.
          Kind regards,
          Carlo
          (Stata 19.0)

          Comment


          • #6
            Many thanks Clyde.

            I checked whether Wald ch2 and prob>ch2 were appeared when eliminated the entire cool variable and can confirm that this variable is the one causing the problem as you anticipated.

            However, I am not quite sure whether I can drop the category which contains only zeros for 3 out of my 20 panel variable (SKUcode).

            Cool codes for a declared country origin label for 20 food items under study. The zero in this case indicates that a country of origin has not been declared for a particular item. If I eliminate the 3 category with zeros as advised that means I will reduce the data size significantly but more importantly would also excludes a relavant category as I am assessing the willingness to pay for a country of origin in content both undeclared and declared origin.

            Other suggested option for merging the offending category with another one is not feasible too in this case as undeclared origin is different from declared country.

            Perhaps I need to explore an alternative model?

            Thanks,
            Mohamud

            Comment


            • #7
              Dear All,

              I have the same problem of missing Wald chi2 and prob>chi2 with the random effect model below. Could you please advise me how I can find the cause of the problem?

              Thank you in advance.

              Code:
              xtreg PRICEENDOFQUARTER_w BVPS_w EPS_w NON_SI_ALL SIZE_w LEV_w ROE_w i.INDG DATE2 DATE3 DATE4 DATE5 DATE6 DATE7 DATE8 DATE9 DATE10 DA
              > TE11 DATE12 DATE13 DATE14 DATE15 DATE16 DATE17 DATE18 DATE19, re robust
              Code:
              Random-effects GLS regression                   Number of obs     =      6,579
              Group variable: ID                              Number of groups  =        409
              
              R-sq:                                           Obs per group:
                   within  = 0.1713                                         min =          1
                   between = 0.5657                                         avg =       16.1
                   overall = 0.5764                                         max =         19
              
                                                              Wald chi2(82)     =          .
              corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =          .
              
                                                 (Std. Err. adjusted for 409 clusters in ID)
              ------------------------------------------------------------------------------
                           |               Robust
              PRICEENDOF~w |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
              -------------+----------------------------------------------------------------
                    BVPS_w |   .8919972   .2118278     4.21   0.000     .4768223    1.307172
                     EPS_w |   1.108857   .5716956     1.94   0.052    -.0116461    2.229359
                NON_SI_ALL |  -6.543971   2.328437    -2.81   0.005    -11.10762   -1.980319
                    SIZE_w |  -.3893046   .4819263    -0.81   0.419    -1.333863    .5552536
                     LEV_w |   .8643213   1.101401     0.78   0.433    -1.294384    3.023027
                     ROE_w |   -2.04782   .8253725    -2.48   0.013     -3.66552   -.4301196
                           |
                      INDG |
                       31  |  -4.090169   3.761615    -1.09   0.277     -11.4628    3.282461
                       33  |  -6.151265   4.143106    -1.48   0.138     -14.2716    1.969075
                       34  |  -7.929094   3.906076    -2.03   0.042    -15.58486    -.273327
                       35  |  -7.276811   4.497647    -1.62   0.106    -16.09204    1.538416
                       37  |  -7.054528   3.957894    -1.78   0.075    -14.81186    .7028017
                       39  |  -8.369118   3.779185    -2.21   0.027    -15.77619   -.9620511
                       41  |  -8.807136    3.88224    -2.27   0.023    -16.41619   -1.198085
                       43  |  -6.909256   4.184706    -1.65   0.099    -15.11113    1.292618
                       45  |  -2.581687   5.529887    -0.47   0.641    -13.42007    8.256693
                       50  |   11.26811   18.53219     0.61   0.543    -25.05431    47.59053
                       51  |  -8.890667    4.05465    -2.19   0.028    -16.83764   -.9436989
                       53  |  -7.995907   3.968383    -2.01   0.044     -15.7738    -.218019
                       54  |  -8.160738   3.745324    -2.18   0.029    -15.50144   -.8200376
                       55  |    .135205   7.528914     0.02   0.986    -14.62119     14.8916
                       56  |  -6.044666   4.036187    -1.50   0.134    -13.95545    1.866115
                       57  |  -8.337951   4.008646    -2.08   0.038    -16.19475   -.4811482
                       58  |  -.5998357   7.178546    -0.08   0.933    -14.66953    13.46986
                       59  |   -7.60933   3.906017    -1.95   0.051    -15.26498    .0463223
                       60  |  -5.730984   4.648281    -1.23   0.218    -14.84145     3.37948
                       62  |  -8.273364   4.144884    -2.00   0.046    -16.39719   -.1495407
                       63  |   22.93586   17.22974     1.33   0.183    -10.83382    56.70554
                       64  |  -3.176404   4.964211    -0.64   0.522    -12.90608     6.55327
                       65  |   7.379138   5.273016     1.40   0.162    -2.955783    17.71406
                       67  |  -8.799142   5.571442    -1.58   0.114    -19.71897    2.120684
                       69  |   -8.00599   3.981803    -2.01   0.044    -15.81018      -.2018
                       70  |   5.636822   13.26535     0.42   0.671    -20.36279    31.63643
                       71  |  -3.728197   5.977415    -0.62   0.533    -15.44372    7.987322
                       72  |  -7.561192   4.136759    -1.83   0.068    -15.66909    .5467066
                       74  |  -9.616042   3.905686    -2.46   0.014    -17.27105   -1.961037
                       75  |  -10.84639   4.350778    -2.49   0.013    -19.37376   -2.319022
                       77  |   -10.4228   3.996894    -2.61   0.009    -18.25657   -2.589037
                       80  |  -5.162223   5.668116    -0.91   0.362    -16.27153     5.94708
                       82  |  -8.325002    3.79173    -2.20   0.028    -15.75666   -.8933474
                       84  |  -8.946675     3.8319    -2.33   0.020    -16.45706   -1.436289
                       86  |  -8.633917    3.90072    -2.21   0.027    -16.27919   -.9886457
                       87  |  -8.846921   4.511313    -1.96   0.050    -17.68893   -.0049104
                       88  |   8.412477   8.146606     1.03   0.302    -7.554578    24.37953
                       90  |  -7.533813   3.956791    -1.90   0.057    -15.28898    .2213561
                       92  |  -8.885393   4.648166    -1.91   0.056    -17.99563     .224844
                       93  |  -9.307036   3.846315    -2.42   0.016    -16.84567   -1.768398
                       94  |  -7.760339   4.025873    -1.93   0.054     -15.6509     .130227
                       95  |  -8.122615   3.784774    -2.15   0.032    -15.54064   -.7045943
                       96  |  -7.161707   3.881206    -1.85   0.065    -14.76873    .4453169
                       97  |  -9.115836   4.043552    -2.25   0.024    -17.04105    -1.19062
                      101  |  -12.28656   4.213538    -2.92   0.004    -20.54494   -4.028177
                      102  |  -10.64283   3.896835    -2.73   0.006    -18.28049   -3.005176
                      104  |  -11.45759   4.210918    -2.72   0.007    -19.71084   -3.204341
                      106  |  -.9673605     4.4311    -0.22   0.827    -9.652158    7.717437
                      107  |  -7.300037   3.774419    -1.93   0.053    -14.69776    .0976885
                      111  |  -9.055243   3.835772    -2.36   0.018    -16.57322   -1.537267
                      112  |  -6.873581   4.419683    -1.56   0.120      -15.536    1.788839
                      113  |  -9.884155   3.906565    -2.53   0.011    -17.54088   -2.227428
                      114  |  -4.476619   5.557725    -0.81   0.421    -15.36956    6.416322
                      117  |   19.53413   14.80936     1.32   0.187    -9.491675    48.55994
                      119  |   2.788215   4.084507     0.68   0.495    -5.217272     10.7937
                      120  |  -7.882104   3.785852    -2.08   0.037    -15.30224   -.4619712
                      126  |  -7.505419   4.110076    -1.83   0.068    -15.56102    .5501812
                      127  |  -13.88023   3.759113    -3.69   0.000    -21.24795     -6.5125
                      129  |  -11.22021   5.078208    -2.21   0.027    -21.17331   -1.267103
                      132  |  -7.830173   4.046324    -1.94   0.053    -15.76082     .100475
                      141  |  -8.810928   3.769013    -2.34   0.019    -16.19806   -1.423798
                      142  |  -9.294045   4.216365    -2.20   0.028    -17.55797   -1.030122
                      143  |  -7.907237   4.032082    -1.96   0.050    -15.80997   -.0045009
                      150  |  -8.749552    3.97115    -2.20   0.028    -16.53286   -.9662407
                      156  |  -2.776763   3.824697    -0.73   0.468    -10.27303    4.719504
                      157  |  -8.802144   3.944942    -2.23   0.026    -16.53409   -1.070201
                      160  |  -9.414771    3.77758    -2.49   0.013    -16.81869   -2.010851
                      161  |  -6.237782   4.928043    -1.27   0.206    -15.89657    3.421004
                      162  |  -7.272383   4.011217    -1.81   0.070    -15.13422    .5894575
                      163  |  -10.48828   3.813872    -2.75   0.006    -17.96333   -3.013232
                      166  |  -10.21665   3.731764    -2.74   0.006    -17.53078   -2.902532
                      167  |  -6.877915   3.829593    -1.80   0.072    -14.38378    .6279499
                      169  |  -12.29671   4.315027    -2.85   0.004    -20.75401   -3.839411
                           |
                     DATE2 |   .9400408   .2426848     3.87   0.000     .4643873    1.415694
                     DATE3 |   .3056869   .2427755     1.26   0.208    -.1701443    .7815181
                     DATE4 |   1.333358   .3186978     4.18   0.000     .7087222    1.957995
                     DATE5 |   1.331914   .3735602     3.57   0.000     .5997495    2.064079
                     DATE6 |   1.547164   .4306687     3.59   0.000     .7030684    2.391259
                     DATE7 |   .9151938   .4201599     2.18   0.029     .0916956    1.738692
                     DATE8 |   .8429149   .4211134     2.00   0.045     .0175479    1.668282
                     DATE9 |   1.508224    .432611     3.49   0.000     .6603219    2.356126
                    DATE10 |    .855066    .418458     2.04   0.041     .0349033    1.675229
                    DATE11 |   .8823469   .4042084     2.18   0.029     .0901131    1.674581
                    DATE12 |   .9111223   .4336018     2.10   0.036     .0612785    1.760966
                    DATE13 |    1.74371   .4895226     3.56   0.000     .7842633    2.703157
                    DATE14 |   2.145244   .4694482     4.57   0.000     1.225142    3.065345
                    DATE15 |   2.155148    .463622     4.65   0.000     1.246466    3.063831
                    DATE16 |     2.5098   .4826357     5.20   0.000     1.563851    3.455748
                    DATE17 |   2.855015   .5120923     5.58   0.000     1.851333    3.858698
                    DATE18 |   1.447598   .4884295     2.96   0.003     .4902938    2.404902
                    DATE19 |   .9693504   .4993351     1.94   0.052    -.0093284    1.948029
                     _cons |   18.71972   8.127826     2.30   0.021     2.789474    34.64997
              -------------+----------------------------------------------------------------
                   sigma_u |  11.214496
                   sigma_e |  3.9781354
                       rho |  .88823004   (fraction of variance due to u_i)
              ------------------------------------------------------------------------------

              Comment


              • #8
                Sinem:
                see: help j_robustsingular.
                Kind regards,
                Carlo
                (Stata 19.0)

                Comment


                • #9
                  Dear Carlo,

                  Thank you for your mail, I got the point.

                  Kind regards

                  Comment


                  • #10
                    Hi Guys, I'm experiencing the same problem. I'm trying to examine the relationship between corruption on economic growth. My independent variables are population growth , gross capital formation , gdp initial , corruption index ( from transparency international) , education but I'm using a proxy for secondary school enrolment. I tried running a regression using random effects. However , I did not get any results for Prob > chi2 and Wald chi2(3). I will attach my file down below. Please help! .


                    . xtreg GDPpercapitagrowth Populationgrowthannual Grosscapitalformationcurrent SES CorruptionPerceptionindex,re

                    Random-effects GLS regression Number of obs = 486
                    Group variable: countrynum Number of groups = 28

                    R-sq: Obs per group:
                    within = 0.0056 min = 4
                    between = 0.2208 avg = 17.4
                    overall = 0.0550 max = 21

                    Wald chi2(3) = .
                    corr(u_i, X) = 0 (assumed) Prob > chi2 = .

                    ----------------------------------------------------------------------------------------------
                    GDPpercapitagrowth | Coef. Std. Err. z P>|z| [95% Conf. Interval]
                    -----------------------------+----------------------------------------------------------------
                    Populationgrowthannual | .0017312 .3224105 0.01 0.996 -.6301818 .6336442
                    Grosscapitalformationcurrent | -3.09e-13 4.35e-13 -0.71 0.477 -1.16e-12 5.44e-13
                    SES | -.0038753 .0123864 -0.31 0.754 -.0281523 .0204016
                    CorruptionPerceptionindex | -.0137191 .0150687 -0.91 0.363 -.0432533 .015815
                    _cons | 3.41364 1.104632 3.09 0.002 1.248602 5.578679
                    -----------------------------+----------------------------------------------------------------
                    sigma_u | 1.1726838
                    sigma_e | 2.6569838
                    rho | .16303829 (fraction of variance due to u_i)
                    ----------------------------------------------------------------------------------------------
                    Also this message keeps popping up! I have been trying to fix this problem for hours!!


                    Note: the rank of the differenced variance matrix (3) does not equal the number of coefficients being tested (4); be sure this is
                    what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected
                    and possibly consider scaling your variables so that the coefficients are on a similar scale.

                    Comment

                    Working...
                    X