Hello all,
we ran this command and we need help with the interpretation of the result.
. hausman fixed random
---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| fixed random Difference S.E.
-------------+----------------------------------------------------------------
average_pl~t | -.1184973 -.1187574 .00026 .0109007
average_pl~e | -.050654 -.0053956 -.0452584 .1504227
average_age | .4468794 .3989634 .0479161 .166521
average_dr~d | -1.072317 -.9654437 -.1068731 .1911281
------------------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg
Test: Ho: difference in coefficients not systematic
chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 0.33
Prob>chi2 = 0.9877
how can we know if fixed effects model is more appropriate than random effects model?
we ran this command and we need help with the interpretation of the result.
. hausman fixed random
---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| fixed random Difference S.E.
-------------+----------------------------------------------------------------
average_pl~t | -.1184973 -.1187574 .00026 .0109007
average_pl~e | -.050654 -.0053956 -.0452584 .1504227
average_age | .4468794 .3989634 .0479161 .166521
average_dr~d | -1.072317 -.9654437 -.1068731 .1911281
------------------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg
Test: Ho: difference in coefficients not systematic
chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 0.33
Prob>chi2 = 0.9877
how can we know if fixed effects model is more appropriate than random effects model?
Comment