Hello,
I am having conflicting results between -varsoc- and -vecrank- results
I have annual data from 1959 to 2013; using DFGLS for unit root testing , it has estimated a maximum lag of 10 using Schwert Criterion. Taking that maximum lag and applying it to -varsoc- command gives that optimal lag selection for my VAR model through the AIC, HQIC, and SBIC at 10 lags as well. Now, when i use the -vecrank- and choose that the maximum lag should be 10, the results state that the maximum lag has been reduces to 9 because of collinearity, and then 8. This process repeats in -vecrank- until i choose a maximum lag of five.
Which lag should I choose for my VAR model and which lag should I choose for my cointegrating rank? can they be different? or am i misunderstanding the results.
Below you will find the results of DFGLS, followed by results of varsoc, followed by results of vecrank. I would appreciate any input or advice you can provide me. Thanking you in advance for your time and consideration.
Regards,
Nayef
please note edu1 = log of education spending; edu2 = first difference of edu1
. dfgls edu1, ers
DF-GLS for edu1 Number of obs = 43
Maxlag = 10 chosen by Schwert criterion
DF-GLS tau 1% Critical 5% Critical 10% Critical
[lags] Test Statistic Value Value Value
------------------------------------------------------------------------------
10 -1.666 -3.755 -3.177 -2.878
9 -1.916 -3.755 -3.177 -2.878
8 -1.586 -3.755 -3.177 -2.878
7 -1.860 -3.755 -3.177 -2.878
6 -1.611 -3.755 -3.177 -2.878
5 -1.582 -3.755 -3.177 -2.878
4 -1.565 -3.755 -3.177 -2.878
3 -1.358 -3.755 -3.177 -2.878
2 -1.307 -3.755 -3.177 -2.878
1 -1.153 -3.755 -3.177 -2.878
Opt Lag (Ng-Perron seq t) = 1 with RMSE .208624
Min SC = -2.959504 at lag 1 with RMSE .208624
Min MAIC = -3.021442 at lag 1 with RMSE .208624
. dfgls edu2, ers
DF-GLS for edu2 Number of obs = 43
Maxlag = 10 chosen by Schwert criterion
DF-GLS tau 1% Critical 5% Critical 10% Critical
[lags] Test Statistic Value Value Value
------------------------------------------------------------------------------
10 -2.072 -3.755 -3.177 -2.878
9 -2.056 -3.755 -3.177 -2.878
8 -1.789 -3.755 -3.177 -2.878
7 -2.192 -3.755 -3.177 -2.878
6 -1.894 -3.755 -3.177 -2.878
5 -2.218 -3.755 -3.177 -2.878
4 -2.334 -3.755 -3.177 -2.878
3 -2.454 -3.755 -3.177 -2.878
2 -3.006 -3.755 -3.177 -2.878
1 -3.454 -3.755 -3.177 -2.878
Opt Lag (Ng-Perron seq t) = 0 [use maxlag(0)]
Min SC = -2.96635 at lag 1 with RMSE .2079111
Min MAIC = -2.263437 at lag 3 with RMSE .2070669
. varsoc edu1 hlth1 dfs1 inf1 econ1 oilrev1, maxlag(10)
Selection-order criteria
Sample: 1970 - 2013 Number of obs = 44
+---------------------------------------------------------------------------+
|lag | LL LR df p FPE AIC HQIC SBIC |
|----+----------------------------------------------------------------------|
| 0 | -88.5693 3.0e-06 4.29861 4.38883 4.5419 |
| 1 | 126.421 429.98 36 0.000 8.8e-10 -3.83731 -3.20573 -2.13422 |
| 2 | 170.243 87.643 36 0.000 6.8e-10 -4.19285 -3.0199 -1.02997 |
| 3 | 218.487 96.488 36 0.000 5.0e-10 -4.74939 -3.03508 -.12672 |
| 4 | 320.54 204.11 36 0.000 4.3e-11 -7.75182 -5.49615 -1.66935 |
| 5 | 403.458 165.84 36 0.000 1.6e-11 -9.88444 -7.08741 -2.34219 |
| 6 | 610.671 414.43 36 0.000 8.5e-14 -17.6669 -14.3285 -8.66483 |
| 7 | 4496.7 7772.1 36 0.000 3.0e-85* -192.668 -188.789 -182.206 |
| 8 | 7091.41 5189.4 36 0.000 . -310.337 -306.367 -299.632 |
| 9 | 7347.44 512.05 36 0.000 . -321.974 -318.004 -311.269 |
| 10 | 7382.47 70.066* 36 0.001 . -323.567* -319.597* -312.862* |
+---------------------------------------------------------------------------+
Endogenous: edu1 hlth1 dfs1 inf1 econ1 oilrev1
Exogenous: _cons
vecrank edu1 hlth1 dfs1 inf1 econ1 oilrev1, trend(constant) lags(10)
maximum lag reduced to 9 because of collinearity
maximum lag reduced to 8 because of collinearity
Johansen tests for cointegration
Trend: constant Number of obs = 46
Sample: 1968 - 2013 Lags = 8
-------------------------------------------------------------------------------
5%
maximum trace critical
rank parms LL eigenvalue statistic value
0 258 . . . 94.15
1 269 . 1.00000 . 68.52
2 278 . 1.00000 . 47.21
3 285 . 1.00000 . 29.68
4 290 . 0.00000 . 15.41
5 293 . -0.00000 . 3.76
6 294 . -0.00000
-------------------------------------------------------------------------------
I am having conflicting results between -varsoc- and -vecrank- results
I have annual data from 1959 to 2013; using DFGLS for unit root testing , it has estimated a maximum lag of 10 using Schwert Criterion. Taking that maximum lag and applying it to -varsoc- command gives that optimal lag selection for my VAR model through the AIC, HQIC, and SBIC at 10 lags as well. Now, when i use the -vecrank- and choose that the maximum lag should be 10, the results state that the maximum lag has been reduces to 9 because of collinearity, and then 8. This process repeats in -vecrank- until i choose a maximum lag of five.
Which lag should I choose for my VAR model and which lag should I choose for my cointegrating rank? can they be different? or am i misunderstanding the results.
Below you will find the results of DFGLS, followed by results of varsoc, followed by results of vecrank. I would appreciate any input or advice you can provide me. Thanking you in advance for your time and consideration.
Regards,
Nayef
please note edu1 = log of education spending; edu2 = first difference of edu1
. dfgls edu1, ers
DF-GLS for edu1 Number of obs = 43
Maxlag = 10 chosen by Schwert criterion
DF-GLS tau 1% Critical 5% Critical 10% Critical
[lags] Test Statistic Value Value Value
------------------------------------------------------------------------------
10 -1.666 -3.755 -3.177 -2.878
9 -1.916 -3.755 -3.177 -2.878
8 -1.586 -3.755 -3.177 -2.878
7 -1.860 -3.755 -3.177 -2.878
6 -1.611 -3.755 -3.177 -2.878
5 -1.582 -3.755 -3.177 -2.878
4 -1.565 -3.755 -3.177 -2.878
3 -1.358 -3.755 -3.177 -2.878
2 -1.307 -3.755 -3.177 -2.878
1 -1.153 -3.755 -3.177 -2.878
Opt Lag (Ng-Perron seq t) = 1 with RMSE .208624
Min SC = -2.959504 at lag 1 with RMSE .208624
Min MAIC = -3.021442 at lag 1 with RMSE .208624
. dfgls edu2, ers
DF-GLS for edu2 Number of obs = 43
Maxlag = 10 chosen by Schwert criterion
DF-GLS tau 1% Critical 5% Critical 10% Critical
[lags] Test Statistic Value Value Value
------------------------------------------------------------------------------
10 -2.072 -3.755 -3.177 -2.878
9 -2.056 -3.755 -3.177 -2.878
8 -1.789 -3.755 -3.177 -2.878
7 -2.192 -3.755 -3.177 -2.878
6 -1.894 -3.755 -3.177 -2.878
5 -2.218 -3.755 -3.177 -2.878
4 -2.334 -3.755 -3.177 -2.878
3 -2.454 -3.755 -3.177 -2.878
2 -3.006 -3.755 -3.177 -2.878
1 -3.454 -3.755 -3.177 -2.878
Opt Lag (Ng-Perron seq t) = 0 [use maxlag(0)]
Min SC = -2.96635 at lag 1 with RMSE .2079111
Min MAIC = -2.263437 at lag 3 with RMSE .2070669
. varsoc edu1 hlth1 dfs1 inf1 econ1 oilrev1, maxlag(10)
Selection-order criteria
Sample: 1970 - 2013 Number of obs = 44
+---------------------------------------------------------------------------+
|lag | LL LR df p FPE AIC HQIC SBIC |
|----+----------------------------------------------------------------------|
| 0 | -88.5693 3.0e-06 4.29861 4.38883 4.5419 |
| 1 | 126.421 429.98 36 0.000 8.8e-10 -3.83731 -3.20573 -2.13422 |
| 2 | 170.243 87.643 36 0.000 6.8e-10 -4.19285 -3.0199 -1.02997 |
| 3 | 218.487 96.488 36 0.000 5.0e-10 -4.74939 -3.03508 -.12672 |
| 4 | 320.54 204.11 36 0.000 4.3e-11 -7.75182 -5.49615 -1.66935 |
| 5 | 403.458 165.84 36 0.000 1.6e-11 -9.88444 -7.08741 -2.34219 |
| 6 | 610.671 414.43 36 0.000 8.5e-14 -17.6669 -14.3285 -8.66483 |
| 7 | 4496.7 7772.1 36 0.000 3.0e-85* -192.668 -188.789 -182.206 |
| 8 | 7091.41 5189.4 36 0.000 . -310.337 -306.367 -299.632 |
| 9 | 7347.44 512.05 36 0.000 . -321.974 -318.004 -311.269 |
| 10 | 7382.47 70.066* 36 0.001 . -323.567* -319.597* -312.862* |
+---------------------------------------------------------------------------+
Endogenous: edu1 hlth1 dfs1 inf1 econ1 oilrev1
Exogenous: _cons
vecrank edu1 hlth1 dfs1 inf1 econ1 oilrev1, trend(constant) lags(10)
maximum lag reduced to 9 because of collinearity
maximum lag reduced to 8 because of collinearity
Johansen tests for cointegration
Trend: constant Number of obs = 46
Sample: 1968 - 2013 Lags = 8
-------------------------------------------------------------------------------
5%
maximum trace critical
rank parms LL eigenvalue statistic value
0 258 . . . 94.15
1 269 . 1.00000 . 68.52
2 278 . 1.00000 . 47.21
3 285 . 1.00000 . 29.68
4 290 . 0.00000 . 15.41
5 293 . -0.00000 . 3.76
6 294 . -0.00000
-------------------------------------------------------------------------------
Comment