Hi everyone,
I'm trying to match postcodes to MMM regions (an indicator of rurality of location, ranging from 1-7) in the attached dataset. The issue is that in some cases the same postcode is assigned different MMM codes (variable mmm2023). In such cases I want to assign the MMM which accounts for the largest area (given by the variable mmm2023area). For example, the postcode 2105 is assigned values of both 1 and 2 for its MMM. For this postcode, since the highest value of 0.7 in mmm2023area is when mmm2023=1, I want all observations with the postcode 2105 to be assigned 1 for mmm2023.
If anyone could explain the code to achieve this what would be great.
Many thanks,
Ashani
I'm trying to match postcodes to MMM regions (an indicator of rurality of location, ranging from 1-7) in the attached dataset. The issue is that in some cases the same postcode is assigned different MMM codes (variable mmm2023). In such cases I want to assign the MMM which accounts for the largest area (given by the variable mmm2023area). For example, the postcode 2105 is assigned values of both 1 and 2 for its MMM. For this postcode, since the highest value of 0.7 in mmm2023area is when mmm2023=1, I want all observations with the postcode 2105 to be assigned 1 for mmm2023.
If anyone could explain the code to achieve this what would be great.
Many thanks,
Ashani
Code:
* Example generated by -dataex-. For more info, type help dataex clear input int postcode byte mmm2023 float mmm2023area 2100 1 2.9 2100 1 1.1 2100 1 6.7 2100 1 2.2 2101 1 2.5 2101 1 3.9 2101 1 2.2 2101 1 18.1 2102 1 4.1 2103 1 4.6 2104 1 3.8 2105 2 .3 2105 2 .2 2105 1 .5 2105 2 .5 2105 1 .7 2106 1 3.8 2107 1 .3 2107 1 5.2 2107 1 .5 2107 1 .5 2107 1 1.4 2108 1 2.7 2108 2 .1 2108 2 .1 2110 1 3.6 2110 1 .7 2111 1 .3 2111 1 .3 2111 1 3.5 2111 1 .4 2111 1 .2 2112 1 1.5 2112 1 .7 2112 1 7.1 2113 1 5.4 2113 1 1.1 2113 1 6.8 2114 1 1.5 2114 1 1.3 2114 1 3.6 2114 1 .7 2114 1 .3 2115 1 3.9 2116 1 3.8 2117 1 1.8 2117 1 1.5 2117 1 1.4 2117 1 2.5 2118 1 8.6 2119 1 5.1 2119 1 1.7 2120 1 3.8 2120 1 3.9 2120 1 6.1 2121 1 6.8 2121 1 2.3 2122 1 5.2 2122 1 3.9 2125 1 9.3 2126 1 8.3 2127 1 6.6 2127 1 .9 2127 1 .6 2128 1 2.7 2130 1 1.2 2131 1 3.4 2132 1 2.4 2133 1 2.6 2134 1 2.4 2135 1 6.6 2136 1 .7 2136 1 2.5 2136 1 .2 2137 1 5.1 2137 1 .5 2137 1 .5 2137 1 .2 2137 1 1 2138 1 2.5 2138 1 1 2138 1 .2 2140 1 1.7 2140 1 2 2141 1 2.1 2141 1 3 2141 1 6.8 2142 1 3.4 2142 1 .5 2142 1 .7 2142 1 3.7 2142 1 .6 2142 1 2.2 2143 1 1.2 2143 1 1.1 2143 1 2 2144 1 8.6 2145 1 1.2 2145 1 2.3 2145 1 .3 2145 1 9 2145 1 2 2145 1 1.8 2145 1 2.9 2145 1 3.1 2146 1 4.7 2146 1 1.3 2147 1 9.6 2147 1 2.7 2147 1 3.7 2148 1 2.6 2148 1 2 2148 1 16.1 2148 1 2.6 2148 1 15 2148 1 2.7 2148 1 1.7 2150 1 5.2 2150 1 .6 2151 1 5.3 2151 1 5.5 2152 1 4.3 2153 1 4.7 2153 1 2.8 2153 1 4.4 2153 1 13.7 2154 1 18.8 2155 1 12.8 2155 1 9.6 2155 1 2.7 2155 1 8.1 2155 1 3.2 2156 2 20.8 2156 1 24.7 2156 1 10.2 2156 1 7.2 2157 5 5.6 2157 5 63.4 2157 2 79.4 2158 1 4.4 2158 2 3.3 2158 1 34.1 2159 1 23.6 2159 2 22.4 2159 2 12.1 2159 2 2.8 2159 5 66.6 2160 1 1.7 2160 1 6.7 2161 1 1 2161 1 5.9 2161 1 2.7 2161 1 1.6 2162 1 4 2162 1 1.8 2163 1 1 2163 1 3.9 2163 1 1.4 2164 1 11.2 2164 1 .4 2164 1 8.9 2165 1 4.4 2165 1 1.5 2165 1 3.2 2165 1 2 2166 1 5 2166 1 2.6 2166 1 2.9 2166 1 1.8 2166 1 2.9 2167 1 7 2168 1 3.2 2168 1 1.2 2168 1 1 2168 1 1.3 2168 1 1.2 2168 1 3.2 2168 1 .9 2168 1 .9 2170 1 7.1 2170 1 2.5 2170 1 7.1 2170 1 12.5 2170 1 1.8 2170 1 9.2 2170 1 6.4 2170 1 4.6 2170 1 3.1 2171 1 1 2171 1 1.5 2171 1 1.1 2171 1 1.3 2171 1 2.6 2171 1 6.2 2171 1 1.1 2171 1 6.7 2172 1 1.6 2172 1 1.7 2172 1 .4 2173 1 60.5 end
Comment