Hello everyone, I’m estimating the effects of fiscal consolidation episodes, measured as a percentage of GDP, on bilateral inward flows to developing economies. My dependent variable contains approximately 90% zeros in the sample.
When I run the regression excluding the zeros, I obtain a statistically significant result at the 10% level with a positive sign. However, when I include the zeros, the significance disappears, the coefficient sign turns negative, and the p-value becomes very high. I’m using fixed effects for origin-year, country pairs. I cluster at the destination-year level because clustering at the country-pair level prevents coefficient estimation.
I would like to understand what might be causing these discrepancies.
. ppmlhdfe in_Flow_per_r Fisc_r $control_jt_MR $control_ijt, vce(cl da) absorb(fepr fpt) nolog d keepsingletons sep(fe)
warning: keeping singleton groups will keep fixed effects that cause separation
warning: dependent variable takes very low values after standardizing (9.6738e-12)
Converged in 20 iterations and 97 HDFE sub-iterations (tol = 1.0e-08)
HDFE PPML regression No. of obs = 87,087
Absorbing 2 HDFE groups Residual df = 956
Statistics robust to heteroskedasticity Wald chi2(15) = 84.27
Deviance = 1268.88905 Prob > chi2 = 0.0000
Log pseudolikelihood = -1708.470875 Pseudo R2 = 0.7994
Number of clusters (da) = 957
(Std. err. adjusted for 957 clusters in da)
-------------------------------------------------------------------------------
| Robust
in_Flow_per_r | Coefficient std. err. z P>|z| [95% conf. interval]
--------------+----------------------------------------------------------------
Fisc_r | -.0108548 .0337795 -0.32 0.748 -.0770614 .0553519
fin_dev_r | -.0030926 .0116539 -0.27 0.791 -.0259337 .0197486
inflation_r | .0218521 .0184559 1.18 0.236 -.0143209 .058025
access_elec_r | -.0365178 .0113473 -3.22 0.001 -.0587581 -.0142774
res_rents_r | -.0474482 .0127503 -3.72 0.000 -.0724383 -.0224582
gross_debt_r | -.0113401 .0057079 -1.99 0.047 -.0225274 -.0001529
gdp_growth_r | .0699072 .0186284 3.75 0.000 .0333963 .1064182
remit_gdp_r | .0520429 .0353487 1.47 0.141 -.0172392 .121325
log_GDP_r | 2.392849 1.144094 2.09 0.036 .1504654 4.635233
Inst_qlt | -.9502582 .4980707 -1.91 0.056 -1.926459 .0259424
CIT_r | .0392391 .0214041 1.83 0.067 -.0027121 .0811903
MR | 3.948637 1.475418 2.68 0.007 1.056872 6.840402
BIT | .707005 .3555214 1.99 0.047 .010196 1.403814
RTA | .5260533 .3545719 1.48 0.138 -.1688948 1.221001
InstDist | -.2619662 .3371992 -0.78 0.437 -.9228645 .3989322
_cons | -89.65802 30.7708 -2.91 0.004 -149.9677 -29.34835
-------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
fepr | 8281 0 8281 |
fpt | 1196 92 1104 |
-----------------------------------------------------+
When I run the regression excluding the zeros, I obtain a statistically significant result at the 10% level with a positive sign. However, when I include the zeros, the significance disappears, the coefficient sign turns negative, and the p-value becomes very high. I’m using fixed effects for origin-year, country pairs. I cluster at the destination-year level because clustering at the country-pair level prevents coefficient estimation.
I would like to understand what might be causing these discrepancies.
. ppmlhdfe in_Flow_per_r Fisc_r $control_jt_MR $control_ijt, vce(cl da) absorb(fepr fpt) nolog d keepsingletons sep(fe)
warning: keeping singleton groups will keep fixed effects that cause separation
warning: dependent variable takes very low values after standardizing (9.6738e-12)
Converged in 20 iterations and 97 HDFE sub-iterations (tol = 1.0e-08)
HDFE PPML regression No. of obs = 87,087
Absorbing 2 HDFE groups Residual df = 956
Statistics robust to heteroskedasticity Wald chi2(15) = 84.27
Deviance = 1268.88905 Prob > chi2 = 0.0000
Log pseudolikelihood = -1708.470875 Pseudo R2 = 0.7994
Number of clusters (da) = 957
(Std. err. adjusted for 957 clusters in da)
-------------------------------------------------------------------------------
| Robust
in_Flow_per_r | Coefficient std. err. z P>|z| [95% conf. interval]
--------------+----------------------------------------------------------------
Fisc_r | -.0108548 .0337795 -0.32 0.748 -.0770614 .0553519
fin_dev_r | -.0030926 .0116539 -0.27 0.791 -.0259337 .0197486
inflation_r | .0218521 .0184559 1.18 0.236 -.0143209 .058025
access_elec_r | -.0365178 .0113473 -3.22 0.001 -.0587581 -.0142774
res_rents_r | -.0474482 .0127503 -3.72 0.000 -.0724383 -.0224582
gross_debt_r | -.0113401 .0057079 -1.99 0.047 -.0225274 -.0001529
gdp_growth_r | .0699072 .0186284 3.75 0.000 .0333963 .1064182
remit_gdp_r | .0520429 .0353487 1.47 0.141 -.0172392 .121325
log_GDP_r | 2.392849 1.144094 2.09 0.036 .1504654 4.635233
Inst_qlt | -.9502582 .4980707 -1.91 0.056 -1.926459 .0259424
CIT_r | .0392391 .0214041 1.83 0.067 -.0027121 .0811903
MR | 3.948637 1.475418 2.68 0.007 1.056872 6.840402
BIT | .707005 .3555214 1.99 0.047 .010196 1.403814
RTA | .5260533 .3545719 1.48 0.138 -.1688948 1.221001
InstDist | -.2619662 .3371992 -0.78 0.437 -.9228645 .3989322
_cons | -89.65802 30.7708 -2.91 0.004 -149.9677 -29.34835
-------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
fepr | 8281 0 8281 |
fpt | 1196 92 1104 |
-----------------------------------------------------+
Comment