the panel models fails. what do i do?. I did lag and it has failed too. for instance; regression showed this-reg GDPpercapita Trade Inflation Grosscapitalformation Accountage Madereceivedigitalpayment
Source | SS df MS Number of obs = 19
-------------+---------------------------------- F(5, 13) = 1.09
Model | 68.9702477 5 13.7940495 Prob > F = 0.4096
Residual | 164.080581 13 12.6215832 R-squared = 0.2959
-------------+---------------------------------- Adj R-squared = 0.0252
Total | 233.050829 18 12.9472683 Root MSE = 3.5527
-------------------------------------------------------------------------------------------
GDPpercapita | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------------------+----------------------------------------------------------------
Trade | .0501887 .0399098 1.26 0.231 -.0360311 .1364085
Inflation | -.2635678 .1630886 -1.62 0.130 -.6158992 .0887636
Grosscapitalformation | .1894215 .1297907 1.46 0.168 -.0909743 .4698173
Accountage | -.1040997 .2257085 -0.46 0.652 -.5917132 .3835138
Madereceivedigitalpayment | .1425778 .2513621 0.57 0.580 -.4004569 .6856126
_cons | -3.702757 4.429473 -0.84 0.418 -13.27205 5.866537
-------------------------------------------------------------------------------------------
then the lag showed this; reg GDPpercapita L1_Accountage L2_Trade L3_Inflation
note: L3_Inflation omitted because of collinearity
Source | SS df MS Number of obs = 3
-------------+---------------------------------- F(2, 0) = .
Model | 2.02966639 2 1.01483319 Prob > F = .
Residual | 0 0 . R-squared = 1.0000
-------------+---------------------------------- Adj R-squared = .
Total | 2.02966639 2 1.01483319 Root MSE = 0
-------------------------------------------------------------------------------
GDPpercapita | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
L1_Accountage | .0312481 . . . . .
L2_Trade | -.0221909 . . . . .
L3_Inflation | 0 (omitted)
_cons | 3.028148 . . . . .
-------------------------------------------------------------------------------
then random effects;
xtreg GDPpercapita Trade Inflation Accountage Ruralpopulation Grosscapitalformation, re
Random-effects GLS regression Number of obs = 23
Group variable: country_id Number of groups = 5
R-sq: Obs per group:
within = 0.1580 min = 3
between = 0.9232 avg = 4.6
overall = 0.2573 max = 5
Wald chi2(5) = 5.89
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.3170
---------------------------------------------------------------------------------------
GDPpercapita | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------------+----------------------------------------------------------------
Trade | .0541794 .0352419 1.54 0.124 -.0148934 .1232523
Inflation | -.1752834 .1445983 -1.21 0.225 -.4586909 .1081241
Accountage | .0503954 .0645909 0.78 0.435 -.0762005 .1769913
Ruralpopulation | .3618812 1.141951 0.32 0.751 -1.876301 2.600064
Grosscapitalformation | .1863113 .0980751 1.90 0.057 -.0059124 .3785351
_cons | -6.224283 5.189902 -1.20 0.230 -16.3963 3.947737
----------------------+----------------------------------------------------------------
sigma_u | 0
sigma_e | 3.4812246
rho | 0 (fraction of variance due to u_i)
---------------------------------------------------------------------------------------
please, how do i solve this?
Source | SS df MS Number of obs = 19
-------------+---------------------------------- F(5, 13) = 1.09
Model | 68.9702477 5 13.7940495 Prob > F = 0.4096
Residual | 164.080581 13 12.6215832 R-squared = 0.2959
-------------+---------------------------------- Adj R-squared = 0.0252
Total | 233.050829 18 12.9472683 Root MSE = 3.5527
-------------------------------------------------------------------------------------------
GDPpercapita | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------------------+----------------------------------------------------------------
Trade | .0501887 .0399098 1.26 0.231 -.0360311 .1364085
Inflation | -.2635678 .1630886 -1.62 0.130 -.6158992 .0887636
Grosscapitalformation | .1894215 .1297907 1.46 0.168 -.0909743 .4698173
Accountage | -.1040997 .2257085 -0.46 0.652 -.5917132 .3835138
Madereceivedigitalpayment | .1425778 .2513621 0.57 0.580 -.4004569 .6856126
_cons | -3.702757 4.429473 -0.84 0.418 -13.27205 5.866537
-------------------------------------------------------------------------------------------
then the lag showed this; reg GDPpercapita L1_Accountage L2_Trade L3_Inflation
note: L3_Inflation omitted because of collinearity
Source | SS df MS Number of obs = 3
-------------+---------------------------------- F(2, 0) = .
Model | 2.02966639 2 1.01483319 Prob > F = .
Residual | 0 0 . R-squared = 1.0000
-------------+---------------------------------- Adj R-squared = .
Total | 2.02966639 2 1.01483319 Root MSE = 0
-------------------------------------------------------------------------------
GDPpercapita | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
L1_Accountage | .0312481 . . . . .
L2_Trade | -.0221909 . . . . .
L3_Inflation | 0 (omitted)
_cons | 3.028148 . . . . .
-------------------------------------------------------------------------------
then random effects;
xtreg GDPpercapita Trade Inflation Accountage Ruralpopulation Grosscapitalformation, re
Random-effects GLS regression Number of obs = 23
Group variable: country_id Number of groups = 5
R-sq: Obs per group:
within = 0.1580 min = 3
between = 0.9232 avg = 4.6
overall = 0.2573 max = 5
Wald chi2(5) = 5.89
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.3170
---------------------------------------------------------------------------------------
GDPpercapita | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------------+----------------------------------------------------------------
Trade | .0541794 .0352419 1.54 0.124 -.0148934 .1232523
Inflation | -.1752834 .1445983 -1.21 0.225 -.4586909 .1081241
Accountage | .0503954 .0645909 0.78 0.435 -.0762005 .1769913
Ruralpopulation | .3618812 1.141951 0.32 0.751 -1.876301 2.600064
Grosscapitalformation | .1863113 .0980751 1.90 0.057 -.0059124 .3785351
_cons | -6.224283 5.189902 -1.20 0.230 -16.3963 3.947737
----------------------+----------------------------------------------------------------
sigma_u | 0
sigma_e | 3.4812246
rho | 0 (fraction of variance due to u_i)
---------------------------------------------------------------------------------------
please, how do i solve this?
Comment