Hi. I created a composite variable "TBHIV_Knowledge" consisting of a total frequency of 39165 (which is people who answered all the 5 questions in my composite variable, which named: Prevention, Transmission1, Transmission2, Cure, coinfection). 39165 is my study sample. However, when I table my predictor variables, they show higher frequencies (e.g. Age 66200, Sex 65000, Employment 39,468 and so on). How can I generate these variables in a way that only shows a total frequencies of 39165 (i.e. each predictor variable has the same frequency as the outcome variable, TBHIV_Knowledge)?
My data looks like this
My data looks like this
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float TB_HIV_Knowledge byte(Prevention Transmission_1 Transmission_2 Cure Coinfection) int Age_Recode byte(Sex Residence_Type Region Marital_Status Employment) long Gross_Income2 . . . . . . 1 1 1 1 . . . . . . . . . 0 2 2 5 . . . . . . . . . 0 1 1 7 . . . . . . . . . 0 2 1 7 . . . . . . . . . 0 2 1 7 . . . . . . . . . 0 2 1 7 . . . . . . . . . 2 2 1 5 . . . . . . . . . 1 1 1 7 . . . . . . . . . 3 2 1 1 . . . . . . . . . 10 2 1 7 . . . . . . . . . 7 2 1 7 . . . . . . . . . 3 2 1 7 . . . . . . . . . 10 1 1 7 . . . . . . . . . 0 2 1 7 . . . . . . . . . 0 1 1 7 . . . . . . . . . 0 2 1 7 . . . . . . . . . 3 2 1 1 . . . . . . . . . 3 1 2 3 . . . . . . . . . 0 1 2 4 . . . . . . . . . 5 2 2 4 . . . . . . . . . 10 . 2 5 . . . . . . . . . 0 2 2 5 . . . . . . . . . 10 2 2 5 . . . . . . . . . 10 2 1 5 . . . . . . . . . 0 2 1 8 . . . . . . . . . 1 1 1 8 . . . . . . . . . 0 2 1 8 . . . . . . . . . 0 2 2 8 . . . . . . . . . 2 1 1 8 . . . . . . . . . 3 1 1 8 . . . . . . . . . 0 1 1 8 . . . . . . . . . 0 1 1 8 . . . 1 1 1 1 2 1 9 1 2 1 1 4 . . . . . . . 7 1 2 1 1 . . 1 1 1 1 3 2 7 2 2 1 2 4 . 1 1 1 1 1 2 2 1 2 1 2 4 . 3 3 3 3 3 3 1 1 2 1 2 1 . . . . . . . 1 1 2 1 2 . . . . . . . . 0 1 2 1 . . . . . . . . . 0 2 2 1 . . . 1 1 1 1 1 2 1 2 2 1 2 3 1 . . . . . . 0 2 2 5 . . . 1 1 1 1 1 2 4 2 2 1 1 3 . 1 1 1 1 1 2 10 2 2 1 1 1 . 1 1 1 1 1 2 10 1 2 1 1 1 . . . . . . . 0 1 2 1 . . . . . . . . . 2 1 2 1 2 1 . 1 2 1 1 2 2 10 1 2 1 2 4 1 2 2 3 1 3 2 4 2 2 1 2 4 . 2 1 1 3 3 2 4 1 2 1 2 4 1 2 2 2 2 2 2 3 2 2 1 2 1 . 1 1 1 1 2 2 7 2 2 1 2 4 1 1 1 1 1 3 2 3 1 2 1 2 1 . 1 1 1 1 1 2 1 2 2 1 2 3 . 1 1 1 1 1 2 6 2 2 1 2 4 . 1 1 1 1 1 2 5 1 2 1 2 4 1 . . . . . . 0 2 2 1 . . . . . . . . . 0 1 2 1 . . . . . . . . . 0 1 2 1 . . . 2 3 2 1 2 3 2 2 2 1 1 4 1 2 1 3 1 3 3 8 1 2 1 1 4 . 2 1 3 3 3 3 10 2 2 1 1 1 . 1 1 1 1 1 3 2 1 2 1 2 4 1 . . . . . . 0 1 2 1 . . . 1 1 1 1 3 2 5 1 2 1 1 4 1 1 1 1 1 1 2 4 2 2 1 1 4 1 1 1 1 1 2 2 1 1 2 1 2 4 1 1 1 1 1 3 2 1 2 2 1 2 3 . . . . . . . 0 2 2 1 . . . . . . . . . 0 1 2 1 . . . 1 1 1 1 1 2 7 1 2 1 2 2 1 1 1 2 1 1 2 4 1 2 2 3 1 . 1 1 1 1 2 2 4 2 2 1 2 1 . . . . . . . 0 1 2 1 . . . 1 1 2 1 1 2 4 1 2 2 3 1 . . . . . . . 0 1 2 1 . . . . . . . . . 0 2 2 1 . . . . 3 3 . 3 3 9 1 2 1 3 1 . 1 2 1 1 1 2 6 1 2 1 2 4 1 1 1 1 1 1 2 5 2 2 1 2 4 1 . . . . . . 0 1 2 1 . . . 1 1 1 1 1 2 2 2 2 1 2 4 . 3 3 3 3 3 3 9 1 2 1 1 4 1 3 3 3 3 3 3 10 2 2 1 1 1 1 2 1 3 1 3 2 1 2 2 1 2 3 . 1 1 1 1 2 2 8 1 2 1 1 1 . 1 1 1 1 3 2 10 1 2 1 1 4 3 . . . . . . 0 1 2 1 . . . . . . . . . 0 1 2 1 . . . 1 1 1 1 1 2 5 2 2 2 2 1 . . . . . . . 0 2 2 1 . . . . . . . . . 0 1 2 1 . . . 1 1 1 1 1 1 4 1 1 1 2 4 1 1 1 1 1 3 1 2 1 1 1 2 4 1 1 1 1 1 1 2 2 1 1 1 2 4 1 2 1 3 3 1 2 2 1 1 1 2 4 1 2 2 2 3 2 2 2 1 1 1 2 4 1 1 1 1 1 1 2 3 1 1 1 2 1 . . . . . . . 0 1 1 1 . . . 1 1 1 1 1 2 9 2 1 1 2 1 1 end label values TB_HIV_Knowledge TB_HIV_Knowledge label def TB_HIV_Knowledge 1 "True", modify label def TB_HIV_Knowledge 2 "False", modify label def TB_HIV_Knowledge 3 "Do Not Know", modify label values Prevention q3_2f label def q3_2f 1 "True", modify label def q3_2f 2 "False", modify label def q3_2f 3 "Do not know", modify label values Transmission_1 q3_1b label def q3_1b 1 "True", modify label def q3_1b 2 "False", modify label def q3_1b 3 "Do not know", modify label values Transmission_2 q3_1c label def q3_1c 1 "True", modify label def q3_1c 2 "False", modify label def q3_1c 3 "Do not know", modify label values Cure q3_3e label def q3_3e 1 "True", modify label def q3_3e 2 "False", modify label def q3_3e 3 "Do not know", modify label values Coinfection q3_4 label def q3_4 1 "True", modify label def q3_4 2 "False", modify label def q3_4 3 "Do not know", modify label values Age_Recode Age_Recode label def Age_Recode 0 "Not_In_The-Study", modify label def Age_Recode 1 "15-19", modify label def Age_Recode 2 "20-24", modify label def Age_Recode 3 "25-29", modify label def Age_Recode 4 "30-34", modify label def Age_Recode 5 "35-39", modify label def Age_Recode 6 "40-44", modify label def Age_Recode 7 "45-49", modify label def Age_Recode 8 "50-54", modify label def Age_Recode 9 "55-59", modify label def Age_Recode 10 "60+", modify label values Sex sex_q label def sex_q 1 "Male", modify label def sex_q 2 "Female", modify label values Residence_Type Residence_Type label def Residence_Type 1 "Urban", modify label def Residence_Type 2 "Rural", modify label values Region province label def province 1 "Western Cape", modify label def province 2 "Eastern Cape", modify label def province 3 "Northern Cape", modify label def province 4 "Free State", modify label def province 5 "KwaZulu-Natal", modify label def province 7 "Gauteng", modify label def province 8 "Mpumalanga", modify label values Marital_Status Marital_Status label def Marital_Status 1 "Married", modify label def Marital_Status 2 "Never Married", modify label def Marital_Status 3 "No longer Married", modify label values Employment q1_7 label def q1_7 1 "Unemployed", modify label def q1_7 2 "Sick/disabled and unable to work", modify label def q1_7 3 "Student/pupil/learner", modify label def q1_7 4 "Employed / Self Employed", modify label values Gross_Income2 Gross_Income2 label def Gross_Income2 1 "Poor >R3500", modify label def Gross_Income2 3 "Working Class R8100-R22000", modify
Comment