Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Path analysis using sem and estat teffects commands

    Hello everyone,

    Thank you in advance for taking the time to read my question and provide your valuable feedback.

    I am currently conducting a path analysis using the sem command in Stata, and I am using estat teffects to estimate indirect effects. For categorical variables with three or more categories, I have created and included dichotomous dummy variables.

    Below are the details of the variables included in the model:
    • Independent variables: black_dummy_2015 (dichotomous), others_dummy_2015 (dichotomous), burden_2015 (continuous)
    • Presumed mediators: pp_sumscore_2015 (continuous), fu_sumscore_2015 (continuous)
    • Dependent variable: phq2_cont_2017_new (continuous)
    • Covariates: age_2015 (continuous), gender_2015 (dichotomous), income_middle_dummy_2015 (dichotomous), income_highest_dummy_2015 (dichotomous), education_nodegree_dummy_2015 (dichotomous), education_degree_dummy_2015 (dichotomous), martstat_2015 (dichotomous)
    STATA commands:

    Code:
    svyset lc7varunit [pweight=lw7cgfinwgt0], strata(lc7varstrat) singleunit(centered)
    Code:
    svy, subpop(if lfl7spdied == -1 & dementia == 1): sem (pp_sumscore_2015 <- black_dummy_2015 others_dummy_2015 burden_2015 age_2015 gender_2015 income_middle_dummy_2015 income_highest_dummy_2015 education_nodegree_dummy_2015 education_degree_dummy_2015 martstat_2015) (fu_sumscore_2015 <- black_dummy_2015 others_dummy_2015 burden_2015 age_2015 gender_2015 income_middle_dummy_2015 income_highest_dummy_2015 education_nodegree_dummy_2015 education_degree_dummy_2015 martstat_2015) (phq2_cont_2017_new <- pp_sumscore_2015 fu_sumscore_2015 black_dummy_2015 others_dummy_2015 burden_2015 age_2015 gender_2015 income_middle_dummy_2015 income_highest_dummy_2015 education_nodegree_dummy_2015 education_degree_dummy_2015 martstat_2015)
    Code:
    estat teffects
    Results:

    Code:
    (running sem on estimation sample)
    
    Survey: Structural equation model                 Number of obs   =      1,331
    Number of strata =  50                            Population size = 18,912,604
    Number of PSUs   = 100                            Subpop. no. obs =        307
                                                      Subpop. size    =  3,361,659
                                                      Design df       =         50
    
    --------------------------------------------------------------------------------------------------
                                     |             Linearized
                                     | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    ---------------------------------+----------------------------------------------------------------
    Structural                       |
      pp_sumscore_2015               |
                    black_dummy_2015 |   .0890687   .1622231     0.55   0.585     -.236766    .4149034
                   others_dummy_2015 |  -.0678564   .1954167    -0.35   0.730    -.4603625    .3246497
               burden_2015 |  -.1318287   .0613242    -2.15   0.036     -.255002   -.0086554
                            age_2015 |  -.0020395   .0095503    -0.21   0.832    -.0212218    .0171428
                         gender_2015 |  -.0381159   .1653286    -0.23   0.819    -.3701881    .2939564
            income_middle_dummy_2015 |   .3006744   .1805747     1.67   0.102    -.0620206    .6633694
           income_highest_dummy_2015 |   .7721241   .2168201     3.56   0.001     .3366282     1.20762
       education_nodegree_dummy_2015 |   .2559932   .2198835     1.16   0.250    -.1856558    .6976422
         education_degree_dummy_2015 |   .4560645   .2278168     2.00   0.051     -.001519    .9136481
                       martstat_2015 |   .1020298   .2028707     0.50   0.617     -.305448    .5095077
                               _cons |   1.734164   .7383076     2.35   0.023     .2512293    3.217098
      -------------------------------+----------------------------------------------------------------
      fu_sumscore_2015               |
                    black_dummy_2015 |   .1452391    .194036     0.75   0.458    -.2444936    .5349718
                   others_dummy_2015 |   .0041426    .186676     0.02   0.982    -.3708073    .3790925
                burden_2015 |   .0227331   .0358777     0.63   0.529    -.0493294    .0947957
                            age_2015 |  -.0040217   .0102904    -0.39   0.698    -.0246905    .0166472
                         gender_2015 |  -.1689776   .1376654    -1.23   0.225    -.4454866    .1075314
            income_middle_dummy_2015 |  -.2985394    .183688    -1.63   0.110    -.6674877    .0704088
           income_highest_dummy_2015 |  -.1653101   .2074005    -0.80   0.429    -.5818862    .2512659
       education_nodegree_dummy_2015 |  -.0511278   .1695507    -0.30   0.764    -.3916805    .2894249
         education_degree_dummy_2015 |   .0996999   .1868298     0.53   0.596    -.2755588    .4749585
                       martstat_2015 |   .4277025   .1346669     3.18   0.003      .157216    .6981889
                               _cons |   2.569397   .8823147     2.91   0.005     .7972161    4.341579
      -------------------------------+----------------------------------------------------------------
      phq2_cont_2017_new             |
                    pp_sumscore_2015 |  -.1607076   .0761298    -2.11   0.040    -.3136189   -.0077963
                    fu_sumscore_2015 |   .1191574   .0975704     1.22   0.228    -.0768186    .3151334
                    black_dummy_2015 |  -.4628109   .2232893    -2.07   0.043    -.9113005   -.0143212
                   others_dummy_2015 |  -.2291025    .254611    -0.90   0.373    -.7405037    .2822987
                burden_2015 |   .0881379   .0820378     1.07   0.288    -.0766399    .2529157
                            age_2015 |   .0083752   .0081676     1.03   0.310    -.0080298    .0247803
                         gender_2015 |   .2038285      .1985     1.03   0.309    -.1948705    .6025275
            income_middle_dummy_2015 |   -.546194   .2274959    -2.40   0.020    -1.003133    -.089255
           income_highest_dummy_2015 |  -.2334033   .2455575    -0.95   0.346    -.7266201    .2598134
       education_nodegree_dummy_2015 |  -.3359974   .1884359    -1.78   0.081     -.714482    .0424873
         education_degree_dummy_2015 |  -.4722006   .2146012    -2.20   0.032    -.9032397   -.0411614
                       martstat_2015 |    .084321    .230182     0.37   0.716    -.3780132    .5466551
                               _cons |   2.729005   .7229281     3.77   0.000     1.276962    4.181049
    ---------------------------------+----------------------------------------------------------------
              var(e.pp_sumscore_2015)|   1.214646   .1007481                      1.028245    1.434837
              var(e.fu_sumscore_2015)|   .8172417   .0808846                      .6699094    .9969766
            var(e.phq2_cont_2017_new)|   1.507177    .188914                      1.171728     1.93866
    --------------------------------------------------------------------------------------------------
    Code:
    Direct effects
    --------------------------------------------------------------------------------------------------
                                     |             Linearized
                                     | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    ---------------------------------+----------------------------------------------------------------
    Structural                       |
      pp_sumscore_2015               |
                    black_dummy_2015 |   .0890687   .1622231     0.55   0.585     -.236766    .4149034
                   others_dummy_2015 |  -.0678564   .1954167    -0.35   0.730    -.4603625    .3246497
                burden_2015 |  -.1318287   .0613242    -2.15   0.036     -.255002   -.0086554
                            age_2015 |  -.0020395   .0095503    -0.21   0.832    -.0212218    .0171428
                         gender_2015 |  -.0381159   .1653286    -0.23   0.819    -.3701881    .2939564
            income_middle_dummy_2015 |   .3006744   .1805747     1.67   0.102    -.0620206    .6633694
           income_highest_dummy_2015 |   .7721241   .2168201     3.56   0.001     .3366282     1.20762
       education_nodegree_dummy_2015 |   .2559932   .2198835     1.16   0.250    -.1856558    .6976422
         education_degree_dummy_2015 |   .4560645   .2278168     2.00   0.051     -.001519    .9136481
                       martstat_2015 |   .1020298   .2028707     0.50   0.617     -.305448    .5095077
      -------------------------------+----------------------------------------------------------------
      fu_sumscore_2015               |
                    black_dummy_2015 |   .1452391    .194036     0.75   0.458    -.2444936    .5349718
                   others_dummy_2015 |   .0041426    .186676     0.02   0.982    -.3708073    .3790925
                burden_2015 |   .0227331   .0358777     0.63   0.529    -.0493294    .0947957
                            age_2015 |  -.0040217   .0102904    -0.39   0.698    -.0246905    .0166472
                         gender_2015 |  -.1689776   .1376654    -1.23   0.225    -.4454866    .1075314
            income_middle_dummy_2015 |  -.2985394    .183688    -1.63   0.110    -.6674877    .0704088
           income_highest_dummy_2015 |  -.1653101   .2074005    -0.80   0.429    -.5818862    .2512659
       education_nodegree_dummy_2015 |  -.0511278   .1695507    -0.30   0.764    -.3916805    .2894249
         education_degree_dummy_2015 |   .0996999   .1868298     0.53   0.596    -.2755588    .4749585
                       martstat_2015 |   .4277025   .1346669     3.18   0.003      .157216    .6981889
      -------------------------------+----------------------------------------------------------------
      phq2_cont_2017_new             |
                    pp_sumscore_2015 |  -.1607076   .0761298    -2.11   0.040    -.3136189   -.0077963
                    fu_sumscore_2015 |   .1191574   .0975704     1.22   0.228    -.0768186    .3151334
                    black_dummy_2015 |  -.4628109   .2232893    -2.07   0.043    -.9113005   -.0143212
                   others_dummy_2015 |  -.2291025    .254611    -0.90   0.373    -.7405037    .2822987
                burden_2015 |   .0881379   .0820378     1.07   0.288    -.0766399    .2529157
                            age_2015 |   .0083752   .0081676     1.03   0.310    -.0080298    .0247803
                         gender_2015 |   .2038285      .1985     1.03   0.309    -.1948705    .6025275
            income_middle_dummy_2015 |   -.546194   .2274959    -2.40   0.020    -1.003133    -.089255
           income_highest_dummy_2015 |  -.2334033   .2455575    -0.95   0.346    -.7266201    .2598134
       education_nodegree_dummy_2015 |  -.3359974   .1884359    -1.78   0.081     -.714482    .0424873
         education_degree_dummy_2015 |  -.4722006   .2146012    -2.20   0.032    -.9032397   -.0411614
                       martstat_2015 |    .084321    .230182     0.37   0.716    -.3780132    .5466551
    --------------------------------------------------------------------------------------------------
    
    
    Indirect effects
    --------------------------------------------------------------------------------------------------
                                     |             Linearized
                                     | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    ---------------------------------+----------------------------------------------------------------
    Structural                       |
      pp_sumscore_2015               |
                    black_dummy_2015 |          0  (no path)
                   others_dummy_2015 |          0  (no path)
                burden_2015 |          0  (no path)
                            age_2015 |          0  (no path)
                         gender_2015 |          0  (no path)
            income_middle_dummy_2015 |          0  (no path)
           income_highest_dummy_2015 |          0  (no path)
       education_nodegree_dummy_2015 |          0  (no path)
         education_degree_dummy_2015 |          0  (no path)
                       martstat_2015 |          0  (no path)
      -------------------------------+----------------------------------------------------------------
      fu_sumscore_2015               |
                    black_dummy_2015 |          0  (no path)
                   others_dummy_2015 |          0  (no path)
                burden_2015 |          0  (no path)
                            age_2015 |          0  (no path)
                         gender_2015 |          0  (no path)
            income_middle_dummy_2015 |          0  (no path)
           income_highest_dummy_2015 |          0  (no path)
       education_nodegree_dummy_2015 |          0  (no path)
         education_degree_dummy_2015 |          0  (no path)
                       martstat_2015 |          0  (no path)
      -------------------------------+----------------------------------------------------------------
      phq2_cont_2017_new             |
                    pp_sumscore_2015 |          0  (no path)
                    fu_sumscore_2015 |          0  (no path)
                    black_dummy_2015 |   .0029923    .037042     0.08   0.936    -.0714087    .0773933
                   others_dummy_2015 |   .0113987    .036488     0.31   0.756    -.0618896    .0846869
                burden_2015 |   .0238947    .011058     2.16   0.036      .001684    .0461054 ***********
                            age_2015 |  -.0001515   .0016694    -0.09   0.928    -.0035045    .0032016
                         gender_2015 |  -.0140094   .0328601    -0.43   0.672    -.0800109    .0519921
            income_middle_dummy_2015 |  -.0838938   .0579556    -1.45   0.154    -.2003011    .0325134
           income_highest_dummy_2015 |  -.1437841    .077325    -1.86   0.069    -.2990959    .0115277
       education_nodegree_dummy_2015 |  -.0472323   .0412695    -1.14   0.258    -.1301245    .0356598
         education_degree_dummy_2015 |  -.0614131   .0541666    -1.13   0.262    -.1702099    .0473838
                       martstat_2015 |   .0345669   .0576572     0.60   0.552    -.0812409    .1503747
    --------------------------------------------------------------------------------------------------
    
    
    Total effects
    --------------------------------------------------------------------------------------------------
                                     |             Linearized
                                     | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    ---------------------------------+----------------------------------------------------------------
    Structural                       |
      pp_sumscore_2015               |
                    black_dummy_2015 |   .0890687   .1622231     0.55   0.585     -.236766    .4149034
                   others_dummy_2015 |  -.0678564   .1954167    -0.35   0.730    -.4603625    .3246497
                burden_2015 |  -.1318287   .0613242    -2.15   0.036     -.255002   -.0086554
                            age_2015 |  -.0020395   .0095503    -0.21   0.832    -.0212218    .0171428
                         gender_2015 |  -.0381159   .1653286    -0.23   0.819    -.3701881    .2939564
            income_middle_dummy_2015 |   .3006744   .1805747     1.67   0.102    -.0620206    .6633694
           income_highest_dummy_2015 |   .7721241   .2168201     3.56   0.001     .3366282     1.20762
       education_nodegree_dummy_2015 |   .2559932   .2198835     1.16   0.250    -.1856558    .6976422
         education_degree_dummy_2015 |   .4560645   .2278168     2.00   0.051     -.001519    .9136481
                       martstat_2015 |   .1020298   .2028707     0.50   0.617     -.305448    .5095077
      -------------------------------+----------------------------------------------------------------
      fu_sumscore_2015               |
                    black_dummy_2015 |   .1452391    .194036     0.75   0.458    -.2444936    .5349718
                   others_dummy_2015 |   .0041426    .186676     0.02   0.982    -.3708073    .3790925
                burden_2015 |   .0227331   .0358777     0.63   0.529    -.0493294    .0947957
                            age_2015 |  -.0040217   .0102904    -0.39   0.698    -.0246905    .0166472
                         gender_2015 |  -.1689776   .1376654    -1.23   0.225    -.4454866    .1075314
            income_middle_dummy_2015 |  -.2985394    .183688    -1.63   0.110    -.6674877    .0704088
           income_highest_dummy_2015 |  -.1653101   .2074005    -0.80   0.429    -.5818862    .2512659
       education_nodegree_dummy_2015 |  -.0511278   .1695507    -0.30   0.764    -.3916805    .2894249
         education_degree_dummy_2015 |   .0996999   .1868298     0.53   0.596    -.2755588    .4749585
                       martstat_2015 |   .4277025   .1346669     3.18   0.003      .157216    .6981889
      -------------------------------+----------------------------------------------------------------
      phq2_cont_2017_new             |
                    pp_sumscore_2015 |  -.1607076   .0761298    -2.11   0.040    -.3136189   -.0077963
                    fu_sumscore_2015 |   .1191574   .0975704     1.22   0.228    -.0768186    .3151334
                    black_dummy_2015 |  -.4598186   .2224514    -2.07   0.044    -.9066253   -.0130119
                   others_dummy_2015 |  -.2177038   .2609541    -0.83   0.408    -.7418456     .306438
                burden_2015 |   .1120326   .0817759     1.37   0.177    -.0522192    .2762844
                            age_2015 |   .0082238   .0084607     0.97   0.336      -.00877    .0252176
                         gender_2015 |   .1898191   .2000359     0.95   0.347    -.2119649    .5916031
            income_middle_dummy_2015 |  -.6300879   .2394865    -2.63   0.011    -1.111111    -.149065
           income_highest_dummy_2015 |  -.3771875   .2564108    -1.47   0.148    -.8922037    .1378287
       education_nodegree_dummy_2015 |  -.3832297    .198443    -1.93   0.059    -.7818143    .0153549
         education_degree_dummy_2015 |  -.5336136   .2122434    -2.51   0.015     -.959917   -.1073103
                       martstat_2015 |   .1188879   .2173001     0.55   0.587    -.3175723    .5553481
    --------------------------------------------------------------------------------------------------
    Questions:

    SEM Command
    Could you please check whether the command is appropriate for the model? Should I include anything additional at the end of the command?

    Identifying the Mediator
    In the indirect effects, I found that burden_2015 has a significant indirect effect on phq2_cont_2017_new (coefficient = 0.024, p = 0.036). I would like to confirm how to identify the mediator responsible for this effect.
    I am currently interpreting pp_sumscore_2015 as the mediator, because:
    • (Direct effect) burden_2015 is significantly associated with pp_sumscore_2015 (coefficient = -0.132, p = 0.036), and
    • (Direct effect) pp_sumscore_2015 is significantly associated with phq2_cont_2017_new (coefficient = -0.161, p = 0.04).
    Does this justify concluding that burden_2015 significantly increases phq2_cont_2017_new through decreased pp_sumscore_2015?
    Bootstrapping with Survey Weights
    Can I obtain bootstrapped standard errors and confidence intervals when using survey weights in sem? If not, are there recommended alternative approaches to estimate robust standard errors or validate indirect effects under complex survey designs?

    Thank you very much!
Working...
X