Hello everyone,
Thank you in advance for taking the time to read my question and provide your valuable feedback.
I am currently conducting a path analysis using the sem command in Stata, and I am using estat teffects to estimate indirect effects. For categorical variables with three or more categories, I have created and included dichotomous dummy variables.
Below are the details of the variables included in the model:
Results:
Questions:
SEM Command
Could you please check whether the command is appropriate for the model? Should I include anything additional at the end of the command?
Identifying the Mediator
In the indirect effects, I found that burden_2015 has a significant indirect effect on phq2_cont_2017_new (coefficient = 0.024, p = 0.036). I would like to confirm how to identify the mediator responsible for this effect.
I am currently interpreting pp_sumscore_2015 as the mediator, because:
Can I obtain bootstrapped standard errors and confidence intervals when using survey weights in sem? If not, are there recommended alternative approaches to estimate robust standard errors or validate indirect effects under complex survey designs?
Thank you very much!
Thank you in advance for taking the time to read my question and provide your valuable feedback.
I am currently conducting a path analysis using the sem command in Stata, and I am using estat teffects to estimate indirect effects. For categorical variables with three or more categories, I have created and included dichotomous dummy variables.
Below are the details of the variables included in the model:
- Independent variables: black_dummy_2015 (dichotomous), others_dummy_2015 (dichotomous), burden_2015 (continuous)
- Presumed mediators: pp_sumscore_2015 (continuous), fu_sumscore_2015 (continuous)
- Dependent variable: phq2_cont_2017_new (continuous)
- Covariates: age_2015 (continuous), gender_2015 (dichotomous), income_middle_dummy_2015 (dichotomous), income_highest_dummy_2015 (dichotomous), education_nodegree_dummy_2015 (dichotomous), education_degree_dummy_2015 (dichotomous), martstat_2015 (dichotomous)
Code:
svyset lc7varunit [pweight=lw7cgfinwgt0], strata(lc7varstrat) singleunit(centered)
Code:
svy, subpop(if lfl7spdied == -1 & dementia == 1): sem (pp_sumscore_2015 <- black_dummy_2015 others_dummy_2015 burden_2015 age_2015 gender_2015 income_middle_dummy_2015 income_highest_dummy_2015 education_nodegree_dummy_2015 education_degree_dummy_2015 martstat_2015) (fu_sumscore_2015 <- black_dummy_2015 others_dummy_2015 burden_2015 age_2015 gender_2015 income_middle_dummy_2015 income_highest_dummy_2015 education_nodegree_dummy_2015 education_degree_dummy_2015 martstat_2015) (phq2_cont_2017_new <- pp_sumscore_2015 fu_sumscore_2015 black_dummy_2015 others_dummy_2015 burden_2015 age_2015 gender_2015 income_middle_dummy_2015 income_highest_dummy_2015 education_nodegree_dummy_2015 education_degree_dummy_2015 martstat_2015)
Code:
estat teffects
Code:
(running sem on estimation sample) Survey: Structural equation model Number of obs = 1,331 Number of strata = 50 Population size = 18,912,604 Number of PSUs = 100 Subpop. no. obs = 307 Subpop. size = 3,361,659 Design df = 50 -------------------------------------------------------------------------------------------------- | Linearized | Coefficient std. err. t P>|t| [95% conf. interval] ---------------------------------+---------------------------------------------------------------- Structural | pp_sumscore_2015 | black_dummy_2015 | .0890687 .1622231 0.55 0.585 -.236766 .4149034 others_dummy_2015 | -.0678564 .1954167 -0.35 0.730 -.4603625 .3246497 burden_2015 | -.1318287 .0613242 -2.15 0.036 -.255002 -.0086554 age_2015 | -.0020395 .0095503 -0.21 0.832 -.0212218 .0171428 gender_2015 | -.0381159 .1653286 -0.23 0.819 -.3701881 .2939564 income_middle_dummy_2015 | .3006744 .1805747 1.67 0.102 -.0620206 .6633694 income_highest_dummy_2015 | .7721241 .2168201 3.56 0.001 .3366282 1.20762 education_nodegree_dummy_2015 | .2559932 .2198835 1.16 0.250 -.1856558 .6976422 education_degree_dummy_2015 | .4560645 .2278168 2.00 0.051 -.001519 .9136481 martstat_2015 | .1020298 .2028707 0.50 0.617 -.305448 .5095077 _cons | 1.734164 .7383076 2.35 0.023 .2512293 3.217098 -------------------------------+---------------------------------------------------------------- fu_sumscore_2015 | black_dummy_2015 | .1452391 .194036 0.75 0.458 -.2444936 .5349718 others_dummy_2015 | .0041426 .186676 0.02 0.982 -.3708073 .3790925 burden_2015 | .0227331 .0358777 0.63 0.529 -.0493294 .0947957 age_2015 | -.0040217 .0102904 -0.39 0.698 -.0246905 .0166472 gender_2015 | -.1689776 .1376654 -1.23 0.225 -.4454866 .1075314 income_middle_dummy_2015 | -.2985394 .183688 -1.63 0.110 -.6674877 .0704088 income_highest_dummy_2015 | -.1653101 .2074005 -0.80 0.429 -.5818862 .2512659 education_nodegree_dummy_2015 | -.0511278 .1695507 -0.30 0.764 -.3916805 .2894249 education_degree_dummy_2015 | .0996999 .1868298 0.53 0.596 -.2755588 .4749585 martstat_2015 | .4277025 .1346669 3.18 0.003 .157216 .6981889 _cons | 2.569397 .8823147 2.91 0.005 .7972161 4.341579 -------------------------------+---------------------------------------------------------------- phq2_cont_2017_new | pp_sumscore_2015 | -.1607076 .0761298 -2.11 0.040 -.3136189 -.0077963 fu_sumscore_2015 | .1191574 .0975704 1.22 0.228 -.0768186 .3151334 black_dummy_2015 | -.4628109 .2232893 -2.07 0.043 -.9113005 -.0143212 others_dummy_2015 | -.2291025 .254611 -0.90 0.373 -.7405037 .2822987 burden_2015 | .0881379 .0820378 1.07 0.288 -.0766399 .2529157 age_2015 | .0083752 .0081676 1.03 0.310 -.0080298 .0247803 gender_2015 | .2038285 .1985 1.03 0.309 -.1948705 .6025275 income_middle_dummy_2015 | -.546194 .2274959 -2.40 0.020 -1.003133 -.089255 income_highest_dummy_2015 | -.2334033 .2455575 -0.95 0.346 -.7266201 .2598134 education_nodegree_dummy_2015 | -.3359974 .1884359 -1.78 0.081 -.714482 .0424873 education_degree_dummy_2015 | -.4722006 .2146012 -2.20 0.032 -.9032397 -.0411614 martstat_2015 | .084321 .230182 0.37 0.716 -.3780132 .5466551 _cons | 2.729005 .7229281 3.77 0.000 1.276962 4.181049 ---------------------------------+---------------------------------------------------------------- var(e.pp_sumscore_2015)| 1.214646 .1007481 1.028245 1.434837 var(e.fu_sumscore_2015)| .8172417 .0808846 .6699094 .9969766 var(e.phq2_cont_2017_new)| 1.507177 .188914 1.171728 1.93866 --------------------------------------------------------------------------------------------------
Code:
Direct effects -------------------------------------------------------------------------------------------------- | Linearized | Coefficient std. err. t P>|t| [95% conf. interval] ---------------------------------+---------------------------------------------------------------- Structural | pp_sumscore_2015 | black_dummy_2015 | .0890687 .1622231 0.55 0.585 -.236766 .4149034 others_dummy_2015 | -.0678564 .1954167 -0.35 0.730 -.4603625 .3246497 burden_2015 | -.1318287 .0613242 -2.15 0.036 -.255002 -.0086554 age_2015 | -.0020395 .0095503 -0.21 0.832 -.0212218 .0171428 gender_2015 | -.0381159 .1653286 -0.23 0.819 -.3701881 .2939564 income_middle_dummy_2015 | .3006744 .1805747 1.67 0.102 -.0620206 .6633694 income_highest_dummy_2015 | .7721241 .2168201 3.56 0.001 .3366282 1.20762 education_nodegree_dummy_2015 | .2559932 .2198835 1.16 0.250 -.1856558 .6976422 education_degree_dummy_2015 | .4560645 .2278168 2.00 0.051 -.001519 .9136481 martstat_2015 | .1020298 .2028707 0.50 0.617 -.305448 .5095077 -------------------------------+---------------------------------------------------------------- fu_sumscore_2015 | black_dummy_2015 | .1452391 .194036 0.75 0.458 -.2444936 .5349718 others_dummy_2015 | .0041426 .186676 0.02 0.982 -.3708073 .3790925 burden_2015 | .0227331 .0358777 0.63 0.529 -.0493294 .0947957 age_2015 | -.0040217 .0102904 -0.39 0.698 -.0246905 .0166472 gender_2015 | -.1689776 .1376654 -1.23 0.225 -.4454866 .1075314 income_middle_dummy_2015 | -.2985394 .183688 -1.63 0.110 -.6674877 .0704088 income_highest_dummy_2015 | -.1653101 .2074005 -0.80 0.429 -.5818862 .2512659 education_nodegree_dummy_2015 | -.0511278 .1695507 -0.30 0.764 -.3916805 .2894249 education_degree_dummy_2015 | .0996999 .1868298 0.53 0.596 -.2755588 .4749585 martstat_2015 | .4277025 .1346669 3.18 0.003 .157216 .6981889 -------------------------------+---------------------------------------------------------------- phq2_cont_2017_new | pp_sumscore_2015 | -.1607076 .0761298 -2.11 0.040 -.3136189 -.0077963 fu_sumscore_2015 | .1191574 .0975704 1.22 0.228 -.0768186 .3151334 black_dummy_2015 | -.4628109 .2232893 -2.07 0.043 -.9113005 -.0143212 others_dummy_2015 | -.2291025 .254611 -0.90 0.373 -.7405037 .2822987 burden_2015 | .0881379 .0820378 1.07 0.288 -.0766399 .2529157 age_2015 | .0083752 .0081676 1.03 0.310 -.0080298 .0247803 gender_2015 | .2038285 .1985 1.03 0.309 -.1948705 .6025275 income_middle_dummy_2015 | -.546194 .2274959 -2.40 0.020 -1.003133 -.089255 income_highest_dummy_2015 | -.2334033 .2455575 -0.95 0.346 -.7266201 .2598134 education_nodegree_dummy_2015 | -.3359974 .1884359 -1.78 0.081 -.714482 .0424873 education_degree_dummy_2015 | -.4722006 .2146012 -2.20 0.032 -.9032397 -.0411614 martstat_2015 | .084321 .230182 0.37 0.716 -.3780132 .5466551 -------------------------------------------------------------------------------------------------- Indirect effects -------------------------------------------------------------------------------------------------- | Linearized | Coefficient std. err. t P>|t| [95% conf. interval] ---------------------------------+---------------------------------------------------------------- Structural | pp_sumscore_2015 | black_dummy_2015 | 0 (no path) others_dummy_2015 | 0 (no path) burden_2015 | 0 (no path) age_2015 | 0 (no path) gender_2015 | 0 (no path) income_middle_dummy_2015 | 0 (no path) income_highest_dummy_2015 | 0 (no path) education_nodegree_dummy_2015 | 0 (no path) education_degree_dummy_2015 | 0 (no path) martstat_2015 | 0 (no path) -------------------------------+---------------------------------------------------------------- fu_sumscore_2015 | black_dummy_2015 | 0 (no path) others_dummy_2015 | 0 (no path) burden_2015 | 0 (no path) age_2015 | 0 (no path) gender_2015 | 0 (no path) income_middle_dummy_2015 | 0 (no path) income_highest_dummy_2015 | 0 (no path) education_nodegree_dummy_2015 | 0 (no path) education_degree_dummy_2015 | 0 (no path) martstat_2015 | 0 (no path) -------------------------------+---------------------------------------------------------------- phq2_cont_2017_new | pp_sumscore_2015 | 0 (no path) fu_sumscore_2015 | 0 (no path) black_dummy_2015 | .0029923 .037042 0.08 0.936 -.0714087 .0773933 others_dummy_2015 | .0113987 .036488 0.31 0.756 -.0618896 .0846869 burden_2015 | .0238947 .011058 2.16 0.036 .001684 .0461054 *********** age_2015 | -.0001515 .0016694 -0.09 0.928 -.0035045 .0032016 gender_2015 | -.0140094 .0328601 -0.43 0.672 -.0800109 .0519921 income_middle_dummy_2015 | -.0838938 .0579556 -1.45 0.154 -.2003011 .0325134 income_highest_dummy_2015 | -.1437841 .077325 -1.86 0.069 -.2990959 .0115277 education_nodegree_dummy_2015 | -.0472323 .0412695 -1.14 0.258 -.1301245 .0356598 education_degree_dummy_2015 | -.0614131 .0541666 -1.13 0.262 -.1702099 .0473838 martstat_2015 | .0345669 .0576572 0.60 0.552 -.0812409 .1503747 -------------------------------------------------------------------------------------------------- Total effects -------------------------------------------------------------------------------------------------- | Linearized | Coefficient std. err. t P>|t| [95% conf. interval] ---------------------------------+---------------------------------------------------------------- Structural | pp_sumscore_2015 | black_dummy_2015 | .0890687 .1622231 0.55 0.585 -.236766 .4149034 others_dummy_2015 | -.0678564 .1954167 -0.35 0.730 -.4603625 .3246497 burden_2015 | -.1318287 .0613242 -2.15 0.036 -.255002 -.0086554 age_2015 | -.0020395 .0095503 -0.21 0.832 -.0212218 .0171428 gender_2015 | -.0381159 .1653286 -0.23 0.819 -.3701881 .2939564 income_middle_dummy_2015 | .3006744 .1805747 1.67 0.102 -.0620206 .6633694 income_highest_dummy_2015 | .7721241 .2168201 3.56 0.001 .3366282 1.20762 education_nodegree_dummy_2015 | .2559932 .2198835 1.16 0.250 -.1856558 .6976422 education_degree_dummy_2015 | .4560645 .2278168 2.00 0.051 -.001519 .9136481 martstat_2015 | .1020298 .2028707 0.50 0.617 -.305448 .5095077 -------------------------------+---------------------------------------------------------------- fu_sumscore_2015 | black_dummy_2015 | .1452391 .194036 0.75 0.458 -.2444936 .5349718 others_dummy_2015 | .0041426 .186676 0.02 0.982 -.3708073 .3790925 burden_2015 | .0227331 .0358777 0.63 0.529 -.0493294 .0947957 age_2015 | -.0040217 .0102904 -0.39 0.698 -.0246905 .0166472 gender_2015 | -.1689776 .1376654 -1.23 0.225 -.4454866 .1075314 income_middle_dummy_2015 | -.2985394 .183688 -1.63 0.110 -.6674877 .0704088 income_highest_dummy_2015 | -.1653101 .2074005 -0.80 0.429 -.5818862 .2512659 education_nodegree_dummy_2015 | -.0511278 .1695507 -0.30 0.764 -.3916805 .2894249 education_degree_dummy_2015 | .0996999 .1868298 0.53 0.596 -.2755588 .4749585 martstat_2015 | .4277025 .1346669 3.18 0.003 .157216 .6981889 -------------------------------+---------------------------------------------------------------- phq2_cont_2017_new | pp_sumscore_2015 | -.1607076 .0761298 -2.11 0.040 -.3136189 -.0077963 fu_sumscore_2015 | .1191574 .0975704 1.22 0.228 -.0768186 .3151334 black_dummy_2015 | -.4598186 .2224514 -2.07 0.044 -.9066253 -.0130119 others_dummy_2015 | -.2177038 .2609541 -0.83 0.408 -.7418456 .306438 burden_2015 | .1120326 .0817759 1.37 0.177 -.0522192 .2762844 age_2015 | .0082238 .0084607 0.97 0.336 -.00877 .0252176 gender_2015 | .1898191 .2000359 0.95 0.347 -.2119649 .5916031 income_middle_dummy_2015 | -.6300879 .2394865 -2.63 0.011 -1.111111 -.149065 income_highest_dummy_2015 | -.3771875 .2564108 -1.47 0.148 -.8922037 .1378287 education_nodegree_dummy_2015 | -.3832297 .198443 -1.93 0.059 -.7818143 .0153549 education_degree_dummy_2015 | -.5336136 .2122434 -2.51 0.015 -.959917 -.1073103 martstat_2015 | .1188879 .2173001 0.55 0.587 -.3175723 .5553481 --------------------------------------------------------------------------------------------------
SEM Command
Could you please check whether the command is appropriate for the model? Should I include anything additional at the end of the command?
Identifying the Mediator
In the indirect effects, I found that burden_2015 has a significant indirect effect on phq2_cont_2017_new (coefficient = 0.024, p = 0.036). I would like to confirm how to identify the mediator responsible for this effect.
I am currently interpreting pp_sumscore_2015 as the mediator, because:
- (Direct effect) burden_2015 is significantly associated with pp_sumscore_2015 (coefficient = -0.132, p = 0.036), and
- (Direct effect) pp_sumscore_2015 is significantly associated with phq2_cont_2017_new (coefficient = -0.161, p = 0.04).
Does this justify concluding that burden_2015 significantly increases phq2_cont_2017_new through decreased pp_sumscore_2015?Bootstrapping with Survey Weights
Can I obtain bootstrapped standard errors and confidence intervals when using survey weights in sem? If not, are there recommended alternative approaches to estimate robust standard errors or validate indirect effects under complex survey designs?
Thank you very much!