Hi,
I was wondering how to form a composite index using entropy method in STATA.
I was wondering how to form a composite index using entropy method in STATA.
search entropy
search entropy
cd h:\where\ever\I\work
capture program drop entropy_index program define entropy_index syntax varlist(min=2 numeric) [if] [in], GENerate(name) // Mark sample marksample touse // Step 1: Normalize Indicators (Min-Max Normalization) foreach var of local varlist { quietly summarize `var' if `touse' local min_`var' = r(min) // Store minimum value local max_`var' = r(max) // Store maximum value gen norm_`var' = (`var' - `min_`var'') / (`max_`var'' - `min_`var'') if `touse' } // Step 2: Compute Proportions foreach var of local varlist { egen total_norm_`var' = total(norm_`var') if `touse' gen prop_`var' = norm_`var' / total_norm_`var' if `touse' } // Step 3: Calculate Entropy egen n = total(1) if `touse' // Total number of observations gen k = 1 / ln(n) if `touse' // Scaling constant foreach var of local varlist { gen ln_prop_`var' = ln(prop_`var' + 1e-6) if `touse' // Add small constant to avoid log(0) gen entropy_`var' = -k * prop_`var' * ln_prop_`var' if `touse' egen e_`var' = total(entropy_`var') if `touse' } // Step 4: Compute Divergence and Weights foreach var of local varlist { gen divergence_`var' = 1 - e_`var' if `touse' } egen total_divergence = rowtotal(`=subinstr("`varlist'", " ", " divergence_", .)') if `touse' foreach var of local varlist { gen weight_`var' = divergence_`var' / total_divergence if `touse' } // Step 5: Construct the Composite Index gen `generate' = 0 if `touse' foreach var of local varlist { replace `generate' = `generate' + weight_`var' * norm_`var' if `touse' } end
capture program drop entropy_index program define entropy_index syntax varlist(min=2 numeric) [if] [in], GENerate(name)
// Mark sample marksample touse
// Step 1: Normalize Indicators (Min-Max Normalization) foreach var of local varlist { quietly summarize `var' if `touse' local min_`var' = r(min) // Store minimum value local max_`var' = r(max) // Store maximum value gen norm_`var' = (`var' - `min_`var'') / (`max_`var'' - `min_`var'') if `touse' }
// Step 2: Compute Proportions foreach var of local varlist { egen total_norm_`var' = total(norm_`var') if `touse' gen prop_`var' = norm_`var' / total_norm_`var' if `touse' }
// Step 3: Calculate Entropy egen n = total(1) if `touse' // Total number of observations gen k = 1 / ln(n) if `touse' // Scaling constant
foreach var of local varlist { gen ln_prop_`var' = ln(prop_`var' + 1e-6) if `touse' // Add small constant to avoid log(0) gen entropy_`var' = -k * prop_`var' * ln_prop_`var' if `touse' egen e_`var' = total(entropy_`var') if `touse' }
cond(p == 0, 0, p * ln(p))
p
gen entropy_`var' = cond(prop_`var' == 0, 0, -k * prop_`var' * ln(prop_`var')) if `touse'
// Step 4: Compute Divergence and Weights foreach var of local varlist { gen divergence_`var' = 1 - e_`var' if `touse' } egen total_divergence = rowtotal(`=subinstr("`varlist'", " ", " divergence_", .)') if `touse' foreach var of local varlist { gen weight_`var' = divergence_`var' / total_divergence if `touse' } // Step 5: Construct the Composite Index gen `generate' = 0 if `touse' foreach var of local varlist { replace `generate' = `generate' + weight_`var' * norm_`var' if `touse' } end
Comment