Hello, everyone. Thank you for reading my post and your invaluable feedback in advance.
I am currently conducting path analysis using STATA gsem commands and nlcom commands for exploring direct, indirect, and total effect, using survey weights.
My research explores the following pathways:
After running this command, I ran nlcom command. Specifically, I would like to seek your feedback on the interpretation of the total indirect effects.
I ran these nlcom commands:
<<<<< 1. Direct Effects >>>>>
***** Direct effects of (burden_con_2015 ---> pp_sumscore_2015) and (burden_con_2015 ---> ss_sumscore_2015) are significant.
<<<<< 2) Indirect Effects >>>>>
===> Indirect effects of (burden_con_2015 --> pp_sumscore_2015 --> anxiety_binary_2017) are not significant.
===> Indirect effects of (burden_con_2015 --> ss_sumscore_2015 --> anxiety_binary_2017) are not significant.
===> Indirect effects of (burden_con_2015 --> pp_sumscore_2015/ss_sumscore_2015 --> anxiety_binary_2017) are significant. ************************************************** ******How can I interpret this?
<<<<< 3) Total Effects >>>>>
===> Total effects of (burden_con_2015 --> pp_sumscore_2015/ss_sumscore_2015 --> anxiety_binary_2017) are marginally significant.
Can I interpret these results as follows?
In this survey-weighted path analysis using a probit link, burden_con_2015 was indirectly associated with having anxiety_binary_2017 through the combined influence of pp_sumscore_2015 and ss_sumscore_2015 (total indirect effect = 0.016, p = .049). While neither indirect path was individually significant, their combined effect reached statistical significance, suggesting a small mediating effect. The direct effect of burden_con_2015 on anxiety_binary_2017 was not significant (p = .155), and the total effect was marginally significant (p = .058), indicating that burden_con_2015 may influence anxiety_binary_2017 primarily through its impact on pp_sumscore_2015 and ss_sumscore_2015, rather than through a direct association.
In this case, I’m wondering how mediation can occur even when the direct effect is not statistically significant. Additionally, is it possible to determine whether burden_con_2015 increases or decreases pp_sumscore_2015 and ss_sumscore_2015 in its influence on anxiety_binary_2017?
Thank you very much for your review and any feedback.
I am currently conducting path analysis using STATA gsem commands and nlcom commands for exploring direct, indirect, and total effect, using survey weights.
My research explores the following pathways:
- Independent variables: racehisp_2015 (categorical), burden_con_2015 (continuous)
- Mediators: pp_sumscore_2015 (continuous), ss_sumscore_2015 (continuous)
- Dependent variables. anxiety_binary_2017 (dichotomous)
- Remaining variables are covariates to be adjusted for: age_2015 i.gender_2015 i.income_tertile_2015 i.education_2015 i.martstat_2015 i.numchu18_2015 health_2015_sum i.relationship_three_2015 i.coresident_caregiver_2015 i.oneyearduration_2015 hourshelped_lastmonth_2015 i.severe_disability_2015
Code:
svy, subpop(if lfl7spdied == -1 & dementia_community == 1): gsem (pp_sumscore_2015 <- i.racehisp_2015 burden_con_2015 age_2015 i.gender_2015 i.income_tertile_2015 i.education_2015 i.martstat_2015 i.numchu18_2015 health_2015_sum i.relationship_three_2015 i.coresident_caregiver_2015 i.oneyearduration_2015 hourshelped_lastmonth_2015 i.severe_disability_2015) (ss_sumscore_2015 <- i.racehisp_2015 burden_con_2015 age_2015 i.gender_2015 i.income_tertile_2015 i.education_2015 i.martstat_2015 i.numchu18_2015 health_2015_sum i.relationship_three_2015 i.coresident_caregiver_2015 i.oneyearduration_2015 hourshelped_lastmonth_2015 i.severe_disability_2015)(anxiety_binary_2017 <- pp_sumscore_2015 ss_sumscore_2015 i.racehisp_2015 burden_con_2015 age_2015 i.gender_2015 i.income_tertile_2015 i.education_2015 i.martstat_2015 i.numchu18_2015 health_2015_sum i.relationship_three_2015 i.coresident_caregiver_2015 i.oneyearduration_2015 hourshelped_lastmonth_2015 i.severe_disability_2015, family(bernoulli) link(probit))
I ran these nlcom commands:
<<<<< 1. Direct Effects >>>>>
Code:
nlcom (_b[anxiety_binary_2017:burden_con_2015]) _nl_1: _b[anxiety_binary_2017:burden_con_2015] ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _nl_1 | .045651 .0320695 1.42 0.155 -.0172042 .1085062 ------------------------------------------------------------------------------ nlcom _b[pp_sumscore_2015:burden_con_2015] _nl_1: _b[pp_sumscore_2015:burden_con_2015] ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _nl_1 | -.0565071 .0265703 -2.13 0.033 -.1085839 -.0044303 ------------------------------------------------------------------------------ nlcom _b[ss_sumscore_2015:burden_con_2015] _nl_1: _b[ss_sumscore_2015:burden_con_2015] ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _nl_1 | .0465658 .0227994 2.04 0.041 .0018799 .0912517 ------------------------------------------------------------------------------ nlcom (_b[anxiety_binary_2017:pp_sumscore_2015]) _nl_1: _b[anxiety_binary_2017:pp_sumscore_2015] ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _nl_1 | -.1523196 .1060796 -1.44 0.151 -.3602319 .0555926 ------------------------------------------------------------------------------ nlcom (_b[anxiety_binary_2017:ss_sumscore_2015]) _nl_1: _b[anxiety_binary_2017:ss_sumscore_2015] ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _nl_1 | .1515167 .1295226 1.17 0.242 -.102343 .4053763 ------------------------------------------------------------------------------
<<<<< 2) Indirect Effects >>>>>
Code:
nlcom (_b[pp_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:pp_sumscore_2015]) _nl_1: _b[pp_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:pp_sumscore_2015] ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _nl_1 | .0086071 .0065089 1.32 0.186 -.00415 .0213643 ------------------------------------------------------------------------------
===> Indirect effects of (burden_con_2015 --> pp_sumscore_2015 --> anxiety_binary_2017) are not significant.
Code:
nlcom (_b[ss_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:ss_sumscore_2015]) _nl_1: _b[ss_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:ss_sumscore_2015] ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _nl_1 | .0070555 .0059271 1.19 0.234 -.0045614 .0186724 ------------------------------------------------------------------------------
Code:
nlcom (_b[pp_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:pp_sumscore_2015])+(_b[ss_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:ss_sumscore_2015]) _nl_1: (_b[pp_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:pp_sumscore_2015])+(_b[ss_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:ss_sumscore_2015]) ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _nl_1 | .0156626 .007965 1.97 0.049 .0000515 .0312738 ------------------------------------------------------------------------------
<<<<< 3) Total Effects >>>>>
Code:
nlcom (_b[pp_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:pp_sumscore_2015]) + (_b[anxiety_binary_2017:burden_con_2015]) _nl_1: (_b[pp_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:pp_sumscore_2015]) + (_b[anxiety_binary_2017:burden_con_2015]) ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _nl_1 | .0542581 .0317945 1.71 0.088 -.0080579 .1165742 ------------------------------------------------------------------------------ nlcom (_b[ss_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:ss_sumscore_2015]) + (_b[anxiety_binary_2017:burden_con_2015]) _nl_1: (_b[ss_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:ss_sumscore_2015]) + (_b[anxiety_binary_2017:burden_con_2015]) ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _nl_1 | .0527065 .0327971 1.61 0.108 -.0115746 .1169876 ------------------------------------------------------------------------------ nlcom (_b[pp_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:pp_sumscore_2015])+(_b[ss_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:ss_sumscore_2015])+(_b[anxiety_binary_2017:burden_con_2015]) _nl_1: (_b[pp_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:pp_sumscore_2015])+(_b[ss_sumscore_2015:burden_con_2015] * _b[anxiety_binary_2017:ss_sumscore_2015])+(_b[anxiety_binary_2017:burden_con_2015]) ------------------------------------------------------------------------------ | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _nl_1 | .0613136 .0323114 1.90 0.058 -.0020155 .1246428 ------------------------------------------------------------------------------
Can I interpret these results as follows?
In this survey-weighted path analysis using a probit link, burden_con_2015 was indirectly associated with having anxiety_binary_2017 through the combined influence of pp_sumscore_2015 and ss_sumscore_2015 (total indirect effect = 0.016, p = .049). While neither indirect path was individually significant, their combined effect reached statistical significance, suggesting a small mediating effect. The direct effect of burden_con_2015 on anxiety_binary_2017 was not significant (p = .155), and the total effect was marginally significant (p = .058), indicating that burden_con_2015 may influence anxiety_binary_2017 primarily through its impact on pp_sumscore_2015 and ss_sumscore_2015, rather than through a direct association.
In this case, I’m wondering how mediation can occur even when the direct effect is not statistically significant. Additionally, is it possible to determine whether burden_con_2015 increases or decreases pp_sumscore_2015 and ss_sumscore_2015 in its influence on anxiety_binary_2017?
Thank you very much for your review and any feedback.
Comment