Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Generate list

    I did the stcurve command for a cumulative incidence curve looking at cumulative incidence of failure (status=1), with death as a competing risk (status=2), comparing two types of chemotherapy (ifp 0 1). How do i generate a list of these curves looking at incidence by time in 12 month intervals?

  • #2
    Welcome to Statalist, Irini!

    Would you be kind enough to show us an extract of your data using the dataex command, as well as the current code you are running to generate the curves? See also the Statalist FAQ on how to pose questions more effectively, especially point #12.

    Comment


    • #3
      [CODE]
      * Example generated by -dataex-. For more info, type help dataex
      clear
      input byte ifp int dftime byte(stat _st _d) int _t byte _t0
      1 93 0 1 0 93 0
      0 157 0 1 0 157 0
      0 121 2 1 0 121 0
      0 55 2 1 0 55 0
      0 60 0 1 0 60 0
      0 159 2 1 0 159 0
      0 15 2 1 0 15 0
      0 42 2 1 0 42 0
      0 94 2 1 0 94 0
      0 29 2 1 0 29 0
      0 69 0 1 0 69 0
      0 10 1 1 1 10 0
      1 15 1 1 1 15 0
      0 68 2 1 0 68 0
      0 63 0 1 0 63 0
      0 52 2 1 0 52 0
      0 29 2 1 0 29 0
      0 22 1 1 1 22 0
      0 19 2 1 0 19 0
      0 57 0 1 0 57 0
      0 49 2 1 0 49 0
      0 12 1 1 1 12 0
      0 60 0 1 0 60 0
      0 54 0 1 0 54 0
      0 53 0 1 0 53 0
      0 44 0 1 0 44 0
      0 184 0 1 0 184 0
      0 43 0 1 0 43 0
      0 6 1 1 1 6 0
      0 59 0 1 0 59 0
      0 45 0 1 0 45 0
      1 83 0 1 0 83 0
      1 20 0 1 0 20 0
      0 108 0 1 0 108 0
      0 62 0 1 0 62 0
      0 63 0 1 0 63 0
      0 58 0 1 0 58 0
      0 56 0 1 0 56 0
      0 46 2 1 0 46 0
      0 196 2 1 0 196 0
      0 60 0 1 0 60 0
      0 150 0 1 0 150 0
      0 47 0 1 0 47 0
      0 45 0 1 0 45 0
      0 44 0 1 0 44 0
      0 67 2 1 0 67 0
      0 44 0 1 0 44 0
      0 6 2 1 0 6 0
      0 52 2 1 0 52 0
      0 42 0 1 0 42 0
      0 38 0 1 0 38 0
      0 35 1 1 1 35 0
      1 24 0 1 0 24 0
      0 24 0 1 0 24 0
      0 110 2 1 0 110 0
      0 112 2 1 0 112 0
      0 3 0 1 0 3 0
      1 85 1 1 1 85 0
      0 112 0 1 0 112 0
      0 156 0 1 0 156 0
      1 143 2 1 0 143 0
      1 44 1 1 1 44 0
      0 99 2 1 0 99 0
      0 51 0 1 0 51 0
      1 162 2 1 0 162 0
      0 0 0 0 . . .
      1 17 0 1 0 17 0
      1 3 0 1 0 3 0
      1 18 0 1 0 18 0
      0 47 2 1 0 47 0
      0 16 0 1 0 16 0
      0 26 2 1 0 26 0
      0 16 0 1 0 16 0
      0 16 0 1 0 16 0
      1 71 0 1 0 71 0
      0 35 1 1 1 35 0
      0 69 2 1 0 69 0
      1 59 0 1 0 59 0
      0 52 2 1 0 52 0
      1 73 0 1 0 73 0
      1 72 0 1 0 72 0
      1 64 0 1 0 64 0
      1 71 0 1 0 71 0
      0 249 0 1 0 249 0
      0 248 0 1 0 248 0
      0 118 0 1 0 118 0
      0 62 0 1 0 62 0
      0 22 0 1 0 22 0
      0 58 2 1 0 58 0
      0 140 0 1 0 140 0
      1 0 2 0 . . .
      0 201 0 1 0 201 0
      0 43 0 1 0 43 0
      0 9 0 1 0 9 0
      0 218 0 1 0 218 0
      0 162 0 1 0 162 0
      0 156 0 1 0 156 0
      0 25 0 1 0 25 0
      0 92 0 1 0 92 0
      0 71 0 1 0 71 0
      end
      stcrreg ifp, compete(stat==2)

      Failure _d: stat==1
      Analysis time _t: dftime

      Iteration 0: Log pseudolikelihood = -235.03074
      Iteration 1: Log pseudolikelihood = -235.03036
      Iteration 2: Log pseudolikelihood = -235.03036

      Competing-risks regression No. of obs = 336
      No. of subjects = 336
      Failure event: stat == 1 No. failed = 42
      Competing event: stat == 2 No. competing = 59
      No. censored = 235

      Wald chi2(1) = 0.22
      Log pseudolikelihood = -235.03036 Prob > chi2 = 0.6399

      Comment


      • #4
        stcurve, cif at(ifp=(0 1))

        Comment

        Working...
        X