Good morning,
I have a question I hope someone here might be able to help me with.
When I run a MIDAS model (midas tp fp fn tn, res(all)), I obtain the summary output without issues, including the numerical AUC and its 95% confidence interval. However, the reported AUC value seems artificially high, and I suspect this may be due to insufficient handling of threshold effects—any insights on this would be greatly appreciated.
In contrast, I have been unable to obtain a numerical AUC and corresponding 95% CI using either metadta or metandi. Is this possible? Could anyone kindly share the appropriate code if so?
I’ve attached the output from all three models in case it’s helpful. There seems to be clear evidence of a negative slope—suggestive of a threshold effect—across all three approaches. The estimated correlation between logit-sensitivity and logit-specificity consistently hovers around –0.36 (midas, metandi, and metadta). Moreover, between-study heterogeneity is substantial: metadta reports tau² values of 1.06 for sensitivity and 1.48 for specificity.
Thank you very much in advance.
Best regards,
[Your Name]
////////////////////////////////////////////
midas tp fp fn tn, res(all)
SUMMARY DATA AND PERFORMANCE ESTIMATES
Number of studies = 26
Reference-positive Units = 1128
Reference-negative Units = 1365
Pretest Prob of Disease = 0.45
Deviance = 274.5
AIC = 284.5
BIC = 294.2
BICdiff = 147.9
Correlation (Mixed Model)= -0.36
Proportion of heterogeneity likely due to threshold effect = 0.13
Interstudy variation in Sensitivity: ICC_SEN = 0.24, 95% CI = [ 0.10- 0.39]
Interstudy variation in Sensitivity: MED_SEN = 0.73, 95% CI = [ 0.66- 0.81]
Interstudy variation in Specificity: ICC_SPE = 0.31, 95% CI = [ 0.14- 0.48]
Interstudy variation in Specificity: MED_SPE = 0.76, 95% CI = [ 0.69- 0.85]
ROC Area, AUROC = 0.96 [0.94 - 0.97]
Heterogeneity (Chi-square): LRT_Q = 96.126, df =2.00, LRT_p =0.000
Inconsistency (I-square): LRT_I2 = 98, 95% CI = [ 97- 99]
Parameter Estimate 95% CI
Sensitivity 0.86 [ 0.79, 0.91]
Specificity 0.94 [ 0.90, 0.96]
Positive Likelihood Ratio 14.1 [ 8.3, 24.0]
Negative Likelihood Ratio 0.15 [ 0.10, 0.22]
Diagnostic Odds Ratio 95 [ 50, 181]
metandi tp fp fn tn
Refining starting values:
Iteration 0: Log likelihood = -140.34194
Iteration 1: Log likelihood = -139.08738
Iteration 2: Log likelihood = -137.28564
Iteration 3: Log likelihood = -137.25924
Performing gradient-based optimization:
Iteration 0: Log likelihood = -137.25924
Iteration 1: Log likelihood = -137.25864
Iteration 2: Log likelihood = -137.25864
Meta-analysis of diagnostic accuracy
Log likelihood = -137.25864 Number of studies = 26
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Bivariate |
E(logitSe) | 1.817829 .2386115 1.350159 2.285499
E(logitSp) | 2.735782 .2929618 2.161588 3.309977
Var(logitSe) | 1.060434 .4155142 .4919871 2.285669
Var(logitSp) | 1.474726 .5893011 .6738621 3.227393
Corr(logits) | -.3571722 .2664412 -.7496772 .2212176
-------------+----------------------------------------------------------------
HSROC |
Lambda | 4.493327 .3317465 3.843116 5.143538
Theta | -.2726054 .3257408 -.9110456 .3658348
beta | .1648972 .2706494 0.61 0.542 -.3655658 .6953602
s2alpha | 1.607763 .809599 .5992313 4.313699
s2theta | .8485989 .2971891 .4271711 1.685788
-------------+----------------------------------------------------------------
Summary pt. |
Se | .8603054 .0286763 .7941556 .9076689
Sp | .9391053 .0167535 .8967466 .9647695
DOR | 94.97475 31.23563 49.84964 180.9482
LR+ | 14.12777 3.797831 8.341673 23.9273
LR- | .1487528 .0299895 .1001977 .2208376
1/LR- | 6.72256 1.355311 4.528215 9.980272
------------------------------------------------------------------------------
Covariance between estimates of E(logitSe) & E(logitSp) -.0172989
. metadta tp fp fn tn, studyid(id)
*********************************** Fitted model ***************************************
tp ~ binomial(se, tp + fn)
tn ~ binomial(sp, tn + fp)
logit(se) = mu_lse + id_lse
logit(sp) = mu_lsp + id_lsp
id_lse, id_lsp ~ biv.normal(0, sigma)
Number of observations = 26
Number of studies = 26
************************************************** **************************************
************************************************** **************************************
Between-study heterogeneity statistics
covar rho
-0.45 -0.36
Tau.sq I^2(%)
Generalized 1.37 61.22
Sensitivity 1.06 69.91
Specificity 1.48 55.10
LR Test: RE vs FE model
Chi2 degrees of
statistic freedom p-val
159.77 3 0.0000
************************************************** **************************************
Study specific test accuracy: Absolute Measures
************************************************** **************************************
| Sensitivity | Specificity
Study | Estimate [95% Conf. Interval] | Estimate [95% Conf. Interval]
--------------------------------------------------------------------------------------+--------------------------------------------+--------------------------------------------
Quillin et al. (1992)(Color Doppler) | 1.00 0.69 1.00 | 1.00 0.85 1.00
Quillin et al. (1994)(Color Doppler) | 0.87 0.73 0.96 | 0.97 0.89 1.00
Patriquin et al. (1996)(Color Doppler) | 1.00 0.75 1.00 | 1.00 0.69 1.00
Lim et al. (1996) (retrospective)(Color/Duplex Doppler) | 0.88 0.76 0.95 | 1.00 0.83 1.00
Lim et al. (1996) (prospective)(Color/Duplex Doppler) | 1.00 0.69 1.00 | 1.00 0.79 1.00
Pinto et al. (1998) (Color Doppler) | 0.70 0.51 0.85 | 1.00 0.95 1.00
Pinto et al. (1998) (Power Doppler) | 0.93 0.78 0.99 | 1.00 0.95 1.00
Gutierrez et al. (1999) (Color Doppler) | 0.56 0.31 0.78 | 0.98 0.93 1.00
Kessler et al. (2003)(Color Doppler) | 0.52 0.38 0.66 | 0.96 0.86 1.00
Incesu et al. (2004)(Power Doppler) | 0.74 0.57 0.88 | 0.93 0.68 1.00
Incesu et al. (2004)(Contrast-Enhanced Power Doppler) | 1.00 0.90 1.00 | 0.93 0.68 1.00
Baldisserotto et al. (2006)(Color Doppler)(If any px considered diagnostic for AA) | 0.92 0.73 0.99 | 0.61 0.39 0.80
Gaitini et al. (2007)(Color Doppler) | 0.74 0.64 0.83 | 0.97 0.95 0.99
Xu et al. (2016)(Color Doppler)(Type 2 flow considered diagnostic for AA) | 0.57 0.39 0.74 | 0.95 0.86 0.99
Uzunosmanoglu et al. (2017)(Color Doppler) | 0.93 0.82 0.99 | 0.86 0.57 0.98
Shin et al. (2017)(Spectral Doppler)(PSV) | 0.89 0.74 0.97 | 0.95 0.85 0.99
Shin et al. (2017)(Spectral Doppler)(RI) | 0.64 0.46 0.79 | 0.96 0.88 1.00
Aydin et al. (2019)(Color Doppler/Power Doppler) | 0.63 0.55 0.71 | 0.91 0.85 0.96
Bakhshandeh et al. (2022)(Spectral Doppler)(PSV) | 0.95 0.88 0.98 | 0.95 0.85 0.99
Bakhshandeh et al. (2022)(Spectral Doppler)(RI) | 0.91 0.83 0.96 | 0.86 0.74 0.94
El-Aleem et al. (2024)(Spectral Doppler)(PSV) | 0.98 0.91 1.00 | 0.75 0.53 0.90
El-Aleem et al. (2024)(Spectral Doppler)(RI) | 0.83 0.71 0.92 | 0.79 0.58 0.93
Saini et al. (2024)(Spectral Doppler)(PSV) | 0.94 0.73 1.00 | 0.55 0.32 0.76
Saini et al. (2024)(Spectral Doppler)(RI) | 0.83 0.59 0.96 | 0.59 0.36 0.79
Anuj et al.(2025)(Spectral Doppler)(PSV) | 0.84 0.64 0.95 | 0.92 0.78 0.98
Anuj et al.(2025)(Spectral Doppler)(RI) | 0.64 0.43 0.82 | 0.94 0.81 0.99
Overall | 0.86 0.79 0.91 | 0.94 0.90 0.96
--------------------------------------------------------------------------------------+--------------------------------------------+--------------------------------------------
| |
.
I have a question I hope someone here might be able to help me with.
When I run a MIDAS model (midas tp fp fn tn, res(all)), I obtain the summary output without issues, including the numerical AUC and its 95% confidence interval. However, the reported AUC value seems artificially high, and I suspect this may be due to insufficient handling of threshold effects—any insights on this would be greatly appreciated.
In contrast, I have been unable to obtain a numerical AUC and corresponding 95% CI using either metadta or metandi. Is this possible? Could anyone kindly share the appropriate code if so?
I’ve attached the output from all three models in case it’s helpful. There seems to be clear evidence of a negative slope—suggestive of a threshold effect—across all three approaches. The estimated correlation between logit-sensitivity and logit-specificity consistently hovers around –0.36 (midas, metandi, and metadta). Moreover, between-study heterogeneity is substantial: metadta reports tau² values of 1.06 for sensitivity and 1.48 for specificity.
Thank you very much in advance.
Best regards,
[Your Name]
////////////////////////////////////////////
midas tp fp fn tn, res(all)
SUMMARY DATA AND PERFORMANCE ESTIMATES
Number of studies = 26
Reference-positive Units = 1128
Reference-negative Units = 1365
Pretest Prob of Disease = 0.45
Deviance = 274.5
AIC = 284.5
BIC = 294.2
BICdiff = 147.9
Correlation (Mixed Model)= -0.36
Proportion of heterogeneity likely due to threshold effect = 0.13
Interstudy variation in Sensitivity: ICC_SEN = 0.24, 95% CI = [ 0.10- 0.39]
Interstudy variation in Sensitivity: MED_SEN = 0.73, 95% CI = [ 0.66- 0.81]
Interstudy variation in Specificity: ICC_SPE = 0.31, 95% CI = [ 0.14- 0.48]
Interstudy variation in Specificity: MED_SPE = 0.76, 95% CI = [ 0.69- 0.85]
ROC Area, AUROC = 0.96 [0.94 - 0.97]
Heterogeneity (Chi-square): LRT_Q = 96.126, df =2.00, LRT_p =0.000
Inconsistency (I-square): LRT_I2 = 98, 95% CI = [ 97- 99]
Parameter Estimate 95% CI
Sensitivity 0.86 [ 0.79, 0.91]
Specificity 0.94 [ 0.90, 0.96]
Positive Likelihood Ratio 14.1 [ 8.3, 24.0]
Negative Likelihood Ratio 0.15 [ 0.10, 0.22]
Diagnostic Odds Ratio 95 [ 50, 181]
metandi tp fp fn tn
Refining starting values:
Iteration 0: Log likelihood = -140.34194
Iteration 1: Log likelihood = -139.08738
Iteration 2: Log likelihood = -137.28564
Iteration 3: Log likelihood = -137.25924
Performing gradient-based optimization:
Iteration 0: Log likelihood = -137.25924
Iteration 1: Log likelihood = -137.25864
Iteration 2: Log likelihood = -137.25864
Meta-analysis of diagnostic accuracy
Log likelihood = -137.25864 Number of studies = 26
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Bivariate |
E(logitSe) | 1.817829 .2386115 1.350159 2.285499
E(logitSp) | 2.735782 .2929618 2.161588 3.309977
Var(logitSe) | 1.060434 .4155142 .4919871 2.285669
Var(logitSp) | 1.474726 .5893011 .6738621 3.227393
Corr(logits) | -.3571722 .2664412 -.7496772 .2212176
-------------+----------------------------------------------------------------
HSROC |
Lambda | 4.493327 .3317465 3.843116 5.143538
Theta | -.2726054 .3257408 -.9110456 .3658348
beta | .1648972 .2706494 0.61 0.542 -.3655658 .6953602
s2alpha | 1.607763 .809599 .5992313 4.313699
s2theta | .8485989 .2971891 .4271711 1.685788
-------------+----------------------------------------------------------------
Summary pt. |
Se | .8603054 .0286763 .7941556 .9076689
Sp | .9391053 .0167535 .8967466 .9647695
DOR | 94.97475 31.23563 49.84964 180.9482
LR+ | 14.12777 3.797831 8.341673 23.9273
LR- | .1487528 .0299895 .1001977 .2208376
1/LR- | 6.72256 1.355311 4.528215 9.980272
------------------------------------------------------------------------------
Covariance between estimates of E(logitSe) & E(logitSp) -.0172989
. metadta tp fp fn tn, studyid(id)
*********************************** Fitted model ***************************************
tp ~ binomial(se, tp + fn)
tn ~ binomial(sp, tn + fp)
logit(se) = mu_lse + id_lse
logit(sp) = mu_lsp + id_lsp
id_lse, id_lsp ~ biv.normal(0, sigma)
Number of observations = 26
Number of studies = 26
************************************************** **************************************
************************************************** **************************************
Between-study heterogeneity statistics
covar rho
-0.45 -0.36
Tau.sq I^2(%)
Generalized 1.37 61.22
Sensitivity 1.06 69.91
Specificity 1.48 55.10
LR Test: RE vs FE model
Chi2 degrees of
statistic freedom p-val
159.77 3 0.0000
************************************************** **************************************
Study specific test accuracy: Absolute Measures
************************************************** **************************************
| Sensitivity | Specificity
Study | Estimate [95% Conf. Interval] | Estimate [95% Conf. Interval]
--------------------------------------------------------------------------------------+--------------------------------------------+--------------------------------------------
Quillin et al. (1992)(Color Doppler) | 1.00 0.69 1.00 | 1.00 0.85 1.00
Quillin et al. (1994)(Color Doppler) | 0.87 0.73 0.96 | 0.97 0.89 1.00
Patriquin et al. (1996)(Color Doppler) | 1.00 0.75 1.00 | 1.00 0.69 1.00
Lim et al. (1996) (retrospective)(Color/Duplex Doppler) | 0.88 0.76 0.95 | 1.00 0.83 1.00
Lim et al. (1996) (prospective)(Color/Duplex Doppler) | 1.00 0.69 1.00 | 1.00 0.79 1.00
Pinto et al. (1998) (Color Doppler) | 0.70 0.51 0.85 | 1.00 0.95 1.00
Pinto et al. (1998) (Power Doppler) | 0.93 0.78 0.99 | 1.00 0.95 1.00
Gutierrez et al. (1999) (Color Doppler) | 0.56 0.31 0.78 | 0.98 0.93 1.00
Kessler et al. (2003)(Color Doppler) | 0.52 0.38 0.66 | 0.96 0.86 1.00
Incesu et al. (2004)(Power Doppler) | 0.74 0.57 0.88 | 0.93 0.68 1.00
Incesu et al. (2004)(Contrast-Enhanced Power Doppler) | 1.00 0.90 1.00 | 0.93 0.68 1.00
Baldisserotto et al. (2006)(Color Doppler)(If any px considered diagnostic for AA) | 0.92 0.73 0.99 | 0.61 0.39 0.80
Gaitini et al. (2007)(Color Doppler) | 0.74 0.64 0.83 | 0.97 0.95 0.99
Xu et al. (2016)(Color Doppler)(Type 2 flow considered diagnostic for AA) | 0.57 0.39 0.74 | 0.95 0.86 0.99
Uzunosmanoglu et al. (2017)(Color Doppler) | 0.93 0.82 0.99 | 0.86 0.57 0.98
Shin et al. (2017)(Spectral Doppler)(PSV) | 0.89 0.74 0.97 | 0.95 0.85 0.99
Shin et al. (2017)(Spectral Doppler)(RI) | 0.64 0.46 0.79 | 0.96 0.88 1.00
Aydin et al. (2019)(Color Doppler/Power Doppler) | 0.63 0.55 0.71 | 0.91 0.85 0.96
Bakhshandeh et al. (2022)(Spectral Doppler)(PSV) | 0.95 0.88 0.98 | 0.95 0.85 0.99
Bakhshandeh et al. (2022)(Spectral Doppler)(RI) | 0.91 0.83 0.96 | 0.86 0.74 0.94
El-Aleem et al. (2024)(Spectral Doppler)(PSV) | 0.98 0.91 1.00 | 0.75 0.53 0.90
El-Aleem et al. (2024)(Spectral Doppler)(RI) | 0.83 0.71 0.92 | 0.79 0.58 0.93
Saini et al. (2024)(Spectral Doppler)(PSV) | 0.94 0.73 1.00 | 0.55 0.32 0.76
Saini et al. (2024)(Spectral Doppler)(RI) | 0.83 0.59 0.96 | 0.59 0.36 0.79
Anuj et al.(2025)(Spectral Doppler)(PSV) | 0.84 0.64 0.95 | 0.92 0.78 0.98
Anuj et al.(2025)(Spectral Doppler)(RI) | 0.64 0.43 0.82 | 0.94 0.81 0.99
Overall | 0.86 0.79 0.91 | 0.94 0.90 0.96
--------------------------------------------------------------------------------------+--------------------------------------------+--------------------------------------------
| |
.
Comment