Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • use of Wald test with sureg

    Hi please

    I need to examine the impact of hard_final_Exact_new (and csopresence1) on two dependent variables: ENVIRONMENTAL_SCORE_w and SOCIAL_SCORE_w. I have estimated separate regressions as follows:

    these are the main regression

    reg ENVIRONMENTAL_SCORE_w hard_final_Exact_new csopresence1 dFreezeXCSO Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w board_size_w GenderRatiogenderratio_w independent_percentage_w SUSTAIBILITY_COMITEE_FU Fund_Status_w FUNDING_RATIO_w Platn_Size_w i.year i.ff_12 , robust cluster (id) nest replace drop(i.year i.ff_12 ) dec(4) save(qqqkkq)

    reg SOCIAL_SCORE_w hard_final_Exact_new csopresence1 dFreezeXCSO Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w board_size_w GenderRatiogenderratio_w independent_percentage_w SUSTAIBILITY_COMITEE_FU Fund_Status_w FUNDING_RATIO_w Platn_Size_w i.year i.ff_12 , robust cluster (id) nest replace drop(i.year i.ff_12 ) dec(4) save(qqqkkq)

    To test whether the coefficient on hard_final_Exact_new is equal across the two equations, I then estimated a seemingly unrelated regression (sureg) and ran a Wald test as follows:
    HTML Code:
    . sureg (ENVIRONMENTAL_SCORE_w = hard_final_Exact_new csopresence1 dFreezeXCSO Firm_
    > Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w board_size_
    > w GenderRatiogenderratio_w independent_percentage_w SUSTAIBILITY_COMITEE_FU Fund_S
    > tatus_w FUNDING_RATIO_w Platn_Size_w i.year i.ff_12)(SOCIAL_SCORE_w = hard_final_E
    > xact_new csopresence1 dFreezeXCSO Firm_Size_w ROA_w Leverage_w Market_book_four_w
    > Non_pension_CFO_w STD_CFO_w board_size_w GenderRatiogenderratio_w independent_perc
    > entage_w SUSTAIBILITY_COMITEE_FU Fund_Status_w FUNDING_RATIO_w Platn_Size_w i.year
    >  i.ff_12),
    
    Seemingly unrelated regression
    ------------------------------------------------------------------------------
    Equation             Obs   Params         RMSE  "R-squared"      chi2   P>chi2
    ------------------------------------------------------------------------------
    ENVIRONMEN~w       1,389       34     1.462768      0.4629    1197.21   0.0000
    SOCIAL_SCO~w       1,389       34     1.391546      0.3686     810.98   0.0000
    ------------------------------------------------------------------------------
    
    -----------------------------------------------------------------------------------
                      | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    ------------------+----------------------------------------------------------------
    ENVIRONMENTAL_S~w |
    hard_final_Exac~w |    1.47537   .4734705     3.12   0.002      .547385    2.403355
         csopresence1 |    .474246   .0900539     5.27   0.000     .2977436    .6507484
          dFreezeXCSO |   1.301604   .5756402     2.26   0.024     .1733696    2.429838
          Firm_Size_w |   .5163808   .0678514     7.61   0.000     .3833945    .6493672
                ROA_w |  -2.584431   1.161321    -2.23   0.026    -4.860578   -.3082843
           Leverage_w |   .8486148   .3462929     2.45   0.014     .1698932    1.527336
    Market_book_fou~w |    .015872   .0055308     2.87   0.004     .0050318    .0267122
    Non_pension_CFO_w |   8.426989   1.499672     5.62   0.000     5.487685    11.36629
            STD_CFO_w |   14.25217   2.720208     5.24   0.000     8.920658    19.58368
         board_size_w |  -.0005482   .0233207    -0.02   0.981     -.046256    .0451595
    GenderRatiogend~w |  -.5176502   .5511037    -0.94   0.348    -1.597794    .5624932
    independent_per~w |   1.582114   .6059581     2.61   0.009     .3944575    2.769769
    SUSTAIBILITY_CO~U |   -.241673   .0966839    -2.50   0.012    -.4311701    -.052176
        Fund_Status_w |   2.855814   1.815546     1.57   0.116    -.7025905    6.414218
      FUNDING_RATIO_w |   .3951698   .3165965     1.25   0.212    -.2253479    1.015687
         Platn_Size_w |  -.0241221   .0498191    -0.48   0.628    -.1217657    .0735215
                      |
                 year |
                2016  |   .2338439   .1550618     1.51   0.132    -.0700717    .5377595
                2017  |   .4155719   .1565518     2.65   0.008     .1087359    .7224079
                2018  |   .5248613   .1585057     3.31   0.001     .2141958    .8355268
                2019  |   .8417459   .1620552     5.19   0.000     .5241235    1.159368
                2020  |   1.338726   .1679686     7.97   0.000     1.009513    1.667938
                2021  |    1.41018   .1733559     8.13   0.000     1.070409    1.749952
                2022  |   1.666995   .1866707     8.93   0.000     1.301127    2.032863
                      |
                ff_12 |
                   2  |  -.0867583   .3649606    -0.24   0.812    -.8020679    .6285513
                   3  |   .0632768   .1844413     0.34   0.732    -.2982216    .4247752
                   4  |  -.2027057   .2466964    -0.82   0.411    -.6862217    .2808102
                   5  |   .7284681   .2177962     3.34   0.001     .3015954    1.155341
                   6  |  -.5378867    .195127    -2.76   0.006    -.9203286   -.1554447
                   7  |   -.722912   .3518839    -2.05   0.040    -1.412592   -.0332322
                   8  |   .4506197   .1868437     2.41   0.016     .0844127    .8168266
                   9  |  -1.801293   .2744625    -6.56   0.000     -2.33923   -1.263357
                  10  |   -.743844   .1972408    -3.77   0.000    -1.130429   -.3572592
                  11  |   -2.25066   .2243409   -10.03   0.000    -2.690361    -1.81096
                  12  |   .6337655   .2021632     3.13   0.002     .2375329    1.029998
                      |
                _cons |  -5.134967   .9275181    -5.54   0.000    -6.952869   -3.317065
    ------------------+----------------------------------------------------------------
    SOCIAL_SCORE_w    |
    hard_final_Exac~w |   1.455826   .4504173     3.23   0.001     .5730242    2.338628
         csopresence1 |   .2556976   .0856692     2.98   0.003      .087789    .4236061
          dFreezeXCSO |   1.733049   .5476124     3.16   0.002     .6597481    2.806349
          Firm_Size_w |  -.0101615   .0645478    -0.16   0.875    -.1366728    .1163498
                ROA_w |   -.439576   1.104776    -0.40   0.691    -2.604898    1.725746
           Leverage_w |   .1962526    .329432     0.60   0.551    -.4494222    .8419275
    Market_book_fou~w |   .0013566   .0052615     0.26   0.797    -.0089558     .011669
    Non_pension_CFO_w |   .6085714   1.426654     0.43   0.670    -2.187619    3.404762
            STD_CFO_w |   1.203728   2.587762     0.47   0.642    -3.868192    6.275647
         board_size_w |  -.0480787   .0221852    -2.17   0.030     -.091561   -.0045965
    GenderRatiogend~w |   1.366735   .5242706     2.61   0.009     .3391837    2.394287
    independent_per~w |   3.793739   .5764541     6.58   0.000      2.66391    4.923568
    SUSTAIBILITY_CO~U |   .1269823   .0919764     1.38   0.167    -.0532882    .3072528
        Fund_Status_w |   .4813046   1.727147     0.28   0.780    -2.903842    3.866451
      FUNDING_RATIO_w |   .4489992   .3011815     1.49   0.136    -.1413056    1.039304
         Platn_Size_w |   .1187499   .0473934     2.51   0.012     .0258606    .2116393
                      |
                 year |
                2016  |   .2072111   .1475119     1.40   0.160    -.0819069    .4963291
                2017  |   .3655264   .1489294     2.45   0.014     .0736302    .6574226
                2018  |   .6257023   .1507881     4.15   0.000      .330163    .9212417
                2019  |   .8751101   .1541648     5.68   0.000     .5729527    1.177268
                2020  |   1.422739   .1597902     8.90   0.000     1.109556    1.735922
                2021  |   1.430727   .1649153     8.68   0.000     1.107499    1.753955
                2022  |    1.59841   .1775818     9.00   0.000     1.250356    1.946464
                      |
                ff_12 |
                   2  |   .4542372   .3471908     1.31   0.191    -.2262443    1.134719
                   3  |   .0887362   .1754609     0.51   0.613     -.255161    .4326333
                   4  |   .8750006   .2346848     3.73   0.000     .4150268    1.334974
                   5  |   .7366388   .2071917     3.56   0.000     .3305505    1.142727
                   6  |   .2219267   .1856263     1.20   0.232    -.1418942    .5857477
                   7  |  -.8821803   .3347508    -2.64   0.008     -1.53828   -.2260808
                   8  |   1.147947   .1777464     6.46   0.000     .7995701    1.496323
                   9  |  -.7231151    .261099    -2.77   0.006     -1.23486   -.2113705
                  10  |  -.1359631   .1876372    -0.72   0.469    -.5037252     .231799
                  11  |  -.6717386   .2134178    -3.15   0.002     -1.09003   -.2534473
                  12  |  -.1546695   .1923199    -0.80   0.421    -.5316097    .2222706
                      |
                _cons |  -2.999039   .8823575    -3.40   0.001    -4.728427    -1.26965
    -----------------------------------------------------------------------------------
    
    .
    .
    . test [ENVIRONMENTAL_SCORE_w]hard_final_Exact_new = [SOCIAL_SCORE_w]hard_final_Exac
    > t_new
    
     ( 1)  [ENVIRONMENTAL_SCORE_w]hard_final_Exact_new -
           [SOCIAL_SCORE_w]hard_final_Exact_new = 0
    
               chi2(  1) =    0.00
             Prob > chi2 =    0.9736
    
    .
    end of do-file
    I would appreciate it if someone could kindly confirm .Is this the correct way to test for equality of coefficients across the two equations

    Many thanks in advance for your help!

  • #2
    You should have -vce(cluster id)- for sureg; otherwise your standard errors don't match those from the standalone regressions. That said, since the only thing that changes is the outcome, you approach looks fine.

    Comment


    • #3
      thanks alot prof Andrew

      Comment

      Working...
      X