I have some collinearity problems when i run my regression in Stata.
The linear model looks like this: log(ΔTotal Costs) = β0 + β1 log(ΔSales) + β2 Pilot License + β3 Demand Uncertainty + β4 Financial Leverage+ β5 (log(ΔSales) × Pilot License) + β6 (log(ΔSales) × Demand Uncertainty) + β7 (log(ΔSales) × Financial Leverage) + Σ βk(log(ΔSales) x Control Variables) + Σ βk(Control Variables) + log(ΔSales) × Industry fixed effects + log(ΔSales) × Year fixed effects + Industry fixed effects + Year fixed effects
This is how i code it in Stata: reghdfe ln_ch_total_cost_w c.ln_ch_sale_wc#c.pilot_miss_to_zero c.ln_ch_sale_wc#c.UNCERT_c c.ln_ch_sale_wc#c.leverage_wc c.ln_ch_sale_wc#c.ceo_tenure_c c.ln_ch_sale_wc#c.ceo_age_c c.ln_ch_sale_wc#c.employee_intensity_wc c.ln_ch_sale_wc#c.capex_ratio_wc c.ln_ch_sale_wc#c.firmsize_wc c.ln_ch_sale_wc#c.ln_adj_asset_intensity_wc c.ln_ch_sale_wc#c.capital_intensity_wc c.ln_ch_sale_wc#c.roa_wc c.ln_ch_sale_wc c.pilot_miss_to_zero c.UNCERT_c c.leverage_wc c.ceo_tenure_c c.ceo_age_c c.employee_intensity_wc c.capex_ratio_wc c.firmsize_wc c.ln_adj_asset_intensity_wc c.capital_intensity_wc c.roa_wc c.ln_ch_sale_wc#i.fyear c.ln_ch_sale_wc#i.naics3, absorb(fyear naics3) vce(cluster gvkey)
Is it correct to use # instead of ## when interacting the variables with log change in sales?
I also wanted to ask if it was possible to interact fixed effects with sales while also absorbing them? because when i tried to do this i get this message "warning: missing F statistic; dropped variables due to collinearity or too few clusters" is there a way to solve this problem? I already tried mean centering variables and standardizing but i still get missing F statistic.
The linear model looks like this: log(ΔTotal Costs) = β0 + β1 log(ΔSales) + β2 Pilot License + β3 Demand Uncertainty + β4 Financial Leverage+ β5 (log(ΔSales) × Pilot License) + β6 (log(ΔSales) × Demand Uncertainty) + β7 (log(ΔSales) × Financial Leverage) + Σ βk(log(ΔSales) x Control Variables) + Σ βk(Control Variables) + log(ΔSales) × Industry fixed effects + log(ΔSales) × Year fixed effects + Industry fixed effects + Year fixed effects
This is how i code it in Stata: reghdfe ln_ch_total_cost_w c.ln_ch_sale_wc#c.pilot_miss_to_zero c.ln_ch_sale_wc#c.UNCERT_c c.ln_ch_sale_wc#c.leverage_wc c.ln_ch_sale_wc#c.ceo_tenure_c c.ln_ch_sale_wc#c.ceo_age_c c.ln_ch_sale_wc#c.employee_intensity_wc c.ln_ch_sale_wc#c.capex_ratio_wc c.ln_ch_sale_wc#c.firmsize_wc c.ln_ch_sale_wc#c.ln_adj_asset_intensity_wc c.ln_ch_sale_wc#c.capital_intensity_wc c.ln_ch_sale_wc#c.roa_wc c.ln_ch_sale_wc c.pilot_miss_to_zero c.UNCERT_c c.leverage_wc c.ceo_tenure_c c.ceo_age_c c.employee_intensity_wc c.capex_ratio_wc c.firmsize_wc c.ln_adj_asset_intensity_wc c.capital_intensity_wc c.roa_wc c.ln_ch_sale_wc#i.fyear c.ln_ch_sale_wc#i.naics3, absorb(fyear naics3) vce(cluster gvkey)
Is it correct to use # instead of ## when interacting the variables with log change in sales?
I also wanted to ask if it was possible to interact fixed effects with sales while also absorbing them? because when i tried to do this i get this message "warning: missing F statistic; dropped variables due to collinearity or too few clusters" is there a way to solve this problem? I already tried mean centering variables and standardizing but i still get missing F statistic.
Comment