Dear All,
I am trying to estimate the 95% CI of the cumulative incidence function after stccreg. Here is the dataex:
Here is my code, with the error it produces:
Thank you in advance for your help.
Sincerely,
Sumedha
I am trying to estimate the 95% CI of the cumulative incidence function after stccreg. Here is the dataex:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(COVID deaths_rate cum_num_vacpct tavg lnprcp grpatidtreat monthlydate) str24 state byte(Female age80plus) float(CumMonthsSAH lnnursing_visits) byte(_st _d _t _t0) float(stop start) 0 0 0 26.89387 4.625463 4436744 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4315043 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2937359 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2615431 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3845592 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2716008 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3933713 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3630074 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3513849 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3941552 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2666122 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4438548 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2478047 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2406805 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4907557 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2582299 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3351107 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2368421 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2598118 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2733528 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4512910 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3970394 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4124404 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2596517 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4369274 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4881949 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4340860 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4796518 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4737993 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4852387 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2359942 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2939381 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2713157 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2931233 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3441568 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4597357 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2627631 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3030906 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3060035 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4841560 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2432266 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4855171 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4702746 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2520379 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2700808 714 "AL" 0 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2705306 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2575344 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4659349 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3230359 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4636934 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3102996 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3186045 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3687858 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2947824 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3135530 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3241614 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4344014 714 "AL" 0 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4350716 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2464095 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3238279 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2609232 714 "AL" 0 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3141305 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4622302 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3161244 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2599746 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2488380 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2742700 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4604622 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2738875 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3601099 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4153228 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3102923 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3225875 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2616427 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3592304 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4336762 714 "AL" 0 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3801665 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3300843 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3792777 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3011217 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4063063 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4623914 714 "AL" 0 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3714557 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3130700 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3092223 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3510609 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3808970 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2672092 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4364307 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3788605 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3097706 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2492527 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 3844655 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2461308 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4320074 714 "AL" 0 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2959691 714 "AL" 0 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4509034 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4696082 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 2473039 714 "AL" 1 1 0 11.36908 1 0 1 0 1 0 0 0 0 26.89387 4.625463 4136783 714 "AL" 1 0 0 11.36908 1 0 1 0 1 0 end format %tm monthlydate label values COVID COVID label def COVID 0 "No confirmed COVID-19", modify
Here is my code, with the error it produces:
Code:
. program define cif_boot_covid, rclass 1. version 17.0 2. . * linear first stage . reghdfe COVID deaths_rate cum_num_vacpct tavg lnprcp, absorb(grpatid monthlydate state, save) cluster(grpatid) residuals(r > esid) 3. predict double COVID_fe, r 4. . * 2nd stage stcrreg with fitted value control . stcrreg Female age80plus CumMonthsSAH lnnursing_visits COVID COVID_fe, compete(d2=2) 5. . * VERSION 1 . * Estimate CIF at COVID=1 and COVID=0 using stcurve and save . tempfile cifout 6. stcurve, cif at(COVID=(0 1)) outfile(`cifout', replace) 7. drop resid COVID_fe 8. . preserve 9. . * Load saved CIF data . use `cifout', clear 10. . * Choose a specific time point (e.g., t = 30) . keep if _t==30 11. gen cif_diff = ci2 - ci1 12. return scalar ci1 = ci1 13. return scalar ci2 = ci2 14. return scalar diff30 = cif_diff[1] 15. restore 16. . end . . bootstrap r(diff30) r(ci1) r(ci2), reps(10) seed(12345): cif_boot_covid (running cif_boot_covid on estimation sample) Bootstrap replications (10): type mismatch: exp.exp: transmorphic found where struct expected r(3000); end of do-file r(3000);
Sincerely,
Sumedha
Comment