Hi,
I wonder if it as possible to have different calculations of margins (one over a variable, one general) in order to be able to compare them after posted them.
The marginal effects I'm calculated come from a probit model.
Then I calculate marginal effect (global one, not year specific).
And I'm interested in the effect on a specific year (to see if the is an evolution in the effect).
I want to compare these last marginal effects (over Years) with the global one (previous margins output). Do you have an idea on how can I do to post this two kinds of marginal effects calculations into a single posted results?
I wonder if it as possible to have different calculations of margins (one over a variable, one general) in order to be able to compare them after posted them.
The marginal effects I'm calculated come from a probit model.
Code:
. probit Y i.Year##(ib(0).Woman ib(0).Less_18) , vce(robust) noomitted Iteration 0: Log pseudolikelihood = -16109.479 Iteration 1: Log pseudolikelihood = -15789.582 Iteration 2: Log pseudolikelihood = -15784.681 Iteration 3: Log pseudolikelihood = -15784.679 Iteration 4: Log pseudolikelihood = -15784.679 Probit regression Number of obs = 66,655 Wald chi2(32) = 649.99 Prob > chi2 = 0.0000 Log pseudolikelihood = -15784.679 Pseudo R2 = 0.0202 ------------------------------------------------------------------------------ | Robust Y | Coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- Year | 2010 | .1281352 .0863191 1.48 0.138 -.0410472 .2973176 2011 | .0060481 .0854791 0.07 0.944 -.1614879 .1735841 2012 | .0287616 .0814254 0.35 0.724 -.1308293 .1883526 2013 | -.0023281 .0789545 -0.03 0.976 -.157076 .1524199 2014 | .0294893 .0793437 0.37 0.710 -.1260215 .1850002 2015 | .0738905 .081634 0.91 0.365 -.0861093 .2338903 2016 | .0573486 .0818858 0.70 0.484 -.1031446 .2178418 2017 | .1550162 .0858574 1.81 0.071 -.0132611 .3232936 2018 | .0300782 .0858373 0.35 0.726 -.1381597 .1983161 2019 | .0372958 .0881112 0.42 0.672 -.135399 .2099907 | Woman | 1. Yes | .5333064 .0702314 7.59 0.000 .3956554 .6709574 | Less_18 | 1. Yes | .1970167 .0673456 2.93 0.003 .0650217 .3290117 | Year#Woman | 2010#1. Yes | -.1455256 .0992115 -1.47 0.142 -.3399766 .0489253 2011#1. Yes | -.2722308 .0972943 -2.80 0.005 -.4629241 -.0815374 2012#1. Yes | -.2519585 .0943133 -2.67 0.008 -.4368093 -.0671078 2013#1. Yes | -.231189 .0923654 -2.50 0.012 -.4122219 -.0501561 2014#1. Yes | -.2627628 .0926483 -2.84 0.005 -.44435 -.0811756 2015#1. Yes | -.2993844 .0949187 -3.15 0.002 -.4854215 -.1133472 2016#1. Yes | -.2547177 .0950445 -2.68 0.007 -.4410014 -.068434 2017#1. Yes | -.3310648 .0986541 -3.36 0.001 -.5244231 -.1377064 2018#1. Yes | -.0919079 .0998531 -0.92 0.357 -.2876165 .1038006 2019#1. Yes | -.1722308 .1010827 -1.70 0.088 -.3703493 .0258877 | Year#Less_18 | 2010#1. Yes | -.0021239 .0945272 -0.02 0.982 -.1873938 .1831461 2011#1. Yes | .0963348 .0888794 1.08 0.278 -.0778657 .2705352 2012#1. Yes | .0418818 .0897145 0.47 0.641 -.1339553 .2177189 2013#1. Yes | .0563873 .0905064 0.62 0.533 -.1210019 .2337765 2014#1. Yes | .061398 .0880866 0.70 0.486 -.1112485 .2340446 2015#1. Yes | .0667762 .0895451 0.75 0.456 -.108729 .2422815 2016#1. Yes | -.0124785 .0872498 -0.14 0.886 -.1834849 .1585279 2017#1. Yes | .0340821 .0895138 0.38 0.703 -.1413617 .209526 2018#1. Yes | -.0845595 .0910924 -0.93 0.353 -.2630972 .0939783 2019#1. Yes | -.003382 .090501 -0.04 0.970 -.1807607 .1739967 | _cons | 1.134713 .0608663 18.64 0.000 1.015417 1.254009 ------------------------------------------------------------------------------
Code:
. margins , dydx(Woman Less_18) Average marginal effects Number of obs = 66,655 Model VCE: Robust Expression: Pr(Y), predict() dy/dx wrt: 1.Woman 1.Less_18 ------------------------------------------------------------------------------ | Delta-method | dy/dx std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- Woman | 1. Yes | .0472766 .003443 13.73 0.000 .0405284 .0540248 | Less_18 | 1. Yes | .0261693 .0019901 13.15 0.000 .0222688 .0300698 ------------------------------------------------------------------------------ Note: dy/dx for factor levels is the discrete change from the base level.
Code:
. margins , dydx(Woman Less_18) over(Year) Average marginal effects Number of obs = 66,655 Model VCE: Robust Expression: Pr(Y), predict() dy/dx wrt: 1.Woman 1.Less_18 Over: Year ------------------------------------------------------------------------------ | Delta-method | dy/dx std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- 0.Woman | (base outcome) -------------+---------------------------------------------------------------- 1.Woman | Year | 2009 | .0746144 .0127245 5.86 0.000 .0496749 .0995539 2010 | .0499041 .0109911 4.54 0.000 .028362 .0714463 2011 | .0414397 .012102 3.42 0.001 .0177202 .0651591 2012 | .0437596 .011085 3.95 0.000 .0220335 .0654858 2013 | .0480971 .0107824 4.46 0.000 .026964 .0692303 2014 | .0415898 .0104321 3.99 0.000 .0211432 .0620364 2015 | .0345284 .0104533 3.30 0.001 .0140402 .0550166 2016 | .042104 .0109987 3.83 0.000 .020547 .063661 2017 | .0275068 .0104202 2.64 0.008 .0070836 .04793 2018 | .0642928 .0127358 5.05 0.000 .0393311 .0892545 2019 | .0528174 .0127015 4.16 0.000 .027923 .0777118 -------------+---------------------------------------------------------------- 0.Less_18 | (base outcome) -------------+---------------------------------------------------------------- 1.Less_18 | Year | 2009 | .0188117 .0059635 3.15 0.002 .0071235 .0305 2010 | .0186067 .0058635 3.17 0.002 .0071144 .030099 2011 | .037299 .0067525 5.52 0.000 .0240644 .0505336 2012 | .0301738 .0069441 4.35 0.000 .0165638 .0437839 2013 | .0327143 .0072 4.54 0.000 .0186025 .046826 2014 | .0327338 .0067081 4.88 0.000 .0195861 .0458815 2015 | .0325373 .0067895 4.79 0.000 .0192301 .0458445 2016 | .0232434 .0066888 3.47 0.001 .0101335 .0363533 2017 | .0266264 .0064072 4.16 0.000 .0140685 .0391843 2018 | .0125332 .0066481 1.89 0.059 -.0004968 .0255631 2019 | .0221292 .0065912 3.36 0.001 .0092106 .0350478 ------------------------------------------------------------------------------ Note: dy/dx for factor levels is the discrete change from the base level.
Comment