Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • postestimation with marginal effects

    Hello Everyone,

    I am having some trouble making clean graphs to visualize my marginal effects estimation. Here's my code and output so far:


    Code:
                        
        mlogit pref_occupation i.ownoccupation i.src i.online i.gender i.education, robust
    
    Iteration 0:  Log pseudolikelihood = -13282.785  
    Iteration 1:  Log pseudolikelihood = -11668.247  
    Iteration 2:  Log pseudolikelihood = -10981.983  
    Iteration 3:  Log pseudolikelihood = -10884.593  
    Iteration 4:  Log pseudolikelihood = -10873.422  
    Iteration 5:  Log pseudolikelihood =  -10870.89  
    Iteration 6:  Log pseudolikelihood = -10870.337  
    Iteration 7:  Log pseudolikelihood = -10870.211  
    Iteration 8:  Log pseudolikelihood = -10870.192  
    Iteration 9:  Log pseudolikelihood = -10870.189  
    Iteration 10: Log pseudolikelihood = -10870.189  
    Iteration 11: Log pseudolikelihood = -10870.189  
    Iteration 12: Log pseudolikelihood = -10870.189  
    
    Multinomial logistic regression                         Number of obs = 16,357
                                                            Wald chi2(78) =      .
                                                            Prob > chi2   =      .
    Log pseudolikelihood = -10870.189                       Pseudo R2     = 0.1816
    
    ---------------------------------------------------------------------------------
                    |               Robust
    pref_occupation | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    ----------------+----------------------------------------------------------------
    professional    |
      ownoccupation |
           service  |  -.8940917   .2847678    -3.14   0.002    -1.452226   -.3359571
             other  |  -1.303323   .1068865   -12.19   0.000    -1.512817    -1.09383
     not mentioned  |  -.3219796   .2028157    -1.59   0.112     -.719491    .0755318
       non working  |  -1.241871   .4696442    -2.64   0.008    -2.162357   -.3213852
                    |
                src |
    non brahmin uc  |  -.1151701    .119313    -0.97   0.334    -.3490192    .1186791
               obc  |   .2114941   .1654971     1.28   0.201    -.1128743    .5358625
                sc  |   .0286448   .1991675     0.14   0.886    -.3617162    .4190059
                st  |  -.3998422   .2905227    -1.38   0.169    -.9692563    .1695719
     not mentioned  |  -.0100743   .1470363    -0.07   0.945    -.2982601    .2781116
            muslim  |   .3971867   .2161564     1.84   0.066     -.026472    .8208454
                    |
           1.online |   -1.04319   .0902244   -11.56   0.000    -1.220026   -.8663531
                    |
             gender |
            female  |   .4735972   .0769838     6.15   0.000     .3227117    .6244827
                    |
          education |
          graduate  |   .5282965   .3352096     1.58   0.115    -.1287022    1.185295
           masters  |   .4077709   .3363395     1.21   0.225    -.2514424    1.066984
               phd  |   1.696606    .357825     4.74   0.000     .9952818     2.39793
     not mentioned  |  -.0639402   .3778484    -0.17   0.866    -.8045095     .676629
                    |
              _cons |  -2.277654   .3514456    -6.48   0.000    -2.966475   -1.588834
    ----------------+----------------------------------------------------------------
    government      |
      ownoccupation |
           service  |   2.256257   .2082479    10.83   0.000     1.848099    2.664416
             other  |  -.4361484   .1593607    -2.74   0.006    -.7484897   -.1238071
     not mentioned  |  -.4030562   .2354912    -1.71   0.087    -.8646105    .0584981
       non working  |   .3177995   .4974802     0.64   0.523    -.6572437    1.292843
                    |
                src |
    non brahmin uc  |  -.4237183   .1890886    -2.24   0.025    -.7943252   -.0531115
               obc  |   .0962057   .2742685     0.35   0.726    -.4413508    .6337621
                sc  |   .4253105   .2965034     1.43   0.151    -.1558254    1.006446
                st  |  -.3310767    .555433    -0.60   0.551    -1.419705    .7575519
     not mentioned  |  -.1749856   .1961516    -0.89   0.372    -.5594357    .2094644
            muslim  |  -.8893363   .6048934    -1.47   0.141    -2.074906     .296233
                    |
           1.online |  -2.082103   .1751364   -11.89   0.000    -2.425364   -1.738842
                    |
             gender |
            female  |   2.024378   .1558544    12.99   0.000     1.718909    2.329847
                    |
          education |
          graduate  |   .0242001   .4462439     0.05   0.957    -.8504219    .8988221
           masters  |   .0558391   .4398674     0.13   0.899    -.8062852    .9179634
               phd  |   1.069088   .4636787     2.31   0.021     .1602942    1.977881
     not mentioned  |   .0806132   .4710325     0.17   0.864    -.8425935     1.00382
                    |
              _cons |  -3.780747    .473357    -7.99   0.000     -4.70851   -2.852985
    ----------------+----------------------------------------------------------------
    other           |
      ownoccupation |
           service  |  -.2109263    .185686    -1.14   0.256    -.5748643    .1530116
             other  |   .1759044    .080241     2.19   0.028     .0186348     .333174
     not mentioned  |   -.366258   .1419477    -2.58   0.010    -.6444703   -.0880457
       non working  |  -.9108873   .4571337    -1.99   0.046    -1.806853   -.0149217
                    |
                src |
    non brahmin uc  |   .0322055   .1041606     0.31   0.757    -.1719455    .2363564
               obc  |  -.0185698   .1987093    -0.09   0.926    -.4080329    .3708934
                sc  |   .1857437   .2069245     0.90   0.369    -.2198209    .5913084
                st  |  -.5219803   1.019264    -0.51   0.609    -2.519702    1.475741
     not mentioned  |   .1561023    .109837     1.42   0.155    -.0591742    .3713788
            muslim  |   .8956778   .2795174     3.20   0.001     .3478338    1.443522
                    |
           1.online |  -4.551922    .170437   -26.71   0.000    -4.885972   -4.217871
                    |
             gender |
            female  |   .3822263    .078165     4.89   0.000     .2290258    .5354269
                    |
          education |
          graduate  |  -.3747503   .2106787    -1.78   0.075     -.787673    .0381724
           masters  |  -.2353686   .2049291    -1.15   0.251    -.6370224    .1662851
               phd  |  -.8926128   .2627813    -3.40   0.001    -1.407655   -.3775709
     not mentioned  |  -.4444305   .2250407    -1.97   0.048    -.8855023   -.0033588
                    |
              _cons |  -.9114188   .2198657    -4.15   0.000    -1.342348     -.48049
    ----------------+----------------------------------------------------------------
    not_specified   |
      ownoccupation |
           service  |  -.3150989   .2756285    -1.14   0.253    -.8553208    .2251231
             other  |  -.5405966   .0704786    -7.67   0.000    -.6787322   -.4024611
     not mentioned  |  -.8435431   .1441884    -5.85   0.000    -1.126147    -.560939
       non working  |  -.5368937   .2895279    -1.85   0.064    -1.104358    .0305706
                    |
                src |
    non brahmin uc  |  -.1776186   .1059914    -1.68   0.094    -.3853579    .0301208
               obc  |   .0288179   .1333259     0.22   0.829     -.232496    .2901318
                sc  |   .0086869   .1526999     0.06   0.955    -.2905995    .3079732
                st  |  -.2407253   .1701144    -1.42   0.157    -.5741434    .0926928
     not mentioned  |   .2826444   .2263054     1.25   0.212    -.1609061    .7261949
            muslim  |   .1901878   .1558986     1.22   0.222    -.1153677    .4957434
                    |
           1.online |   18.34347    .069675   263.27   0.000     18.20691    18.48003
                    |
             gender |
            female  |   .7931785   .0615426    12.89   0.000     .6725572    .9137999
                    |
          education |
          graduate  |   1.281536   .4198802     3.05   0.002     .4585854    2.104486
           masters  |   1.432796   .4212902     3.40   0.001     .6070819    2.258509
               phd  |   1.019674   .4231709     2.41   0.016     .1902739    1.849073
     not mentioned  |   1.007625   .4262255     2.36   0.018     .1722382    1.843011
                    |
              _cons |  -21.68844   .4280108   -50.67   0.000    -22.52733   -20.84956
    ----------------+----------------------------------------------------------------
    not_mentioned   |  (base outcome)
    ----------------+----------------------------------------------------------------
    not_working     |
      ownoccupation |
           service  |  -18.59885   .2942519   -63.21   0.000    -19.17557   -18.02212
             other  |   .6739505   .3224618     2.09   0.037      .041937    1.305964
     not mentioned  |   1.524725   .6721087     2.27   0.023     .2074164    2.842034
       non working  |   -17.1756   .4124045   -41.65   0.000     -17.9839    -16.3673
                    |
                src |
    non brahmin uc  |   -.291478   .4326962    -0.67   0.501    -1.139547     .556591
               obc  |   .4237774   .5158964     0.82   0.411    -.5873609    1.434916
                sc  |  -.9972464   1.069131    -0.93   0.351    -3.092705    1.098212
                st  |  -.3204934   1.065815    -0.30   0.764    -2.409452    1.768465
     not mentioned  |  -.5709781   .5770595    -0.99   0.322    -1.701994    .5600376
            muslim  |   .5960823   .6707334     0.89   0.374    -.7185311    1.910696
                    |
           1.online |  -.1673457   .3401364    -0.49   0.623    -.8340009    .4993094
                    |
             gender |
            female  |  -2.216526   .4532037    -4.89   0.000    -3.104789   -1.328263
                    |
          education |
          graduate  |  -.6996978   .7508931    -0.93   0.351    -2.171421    .7720257
           masters  |  -.5986999   .7498328    -0.80   0.425    -2.068345    .8709454
               phd  |   .3723765   1.035089     0.36   0.719     -1.65636    2.401113
     not mentioned  |  -.9566029   1.051978    -0.91   0.363    -3.018443    1.105237
                    |
              _cons |  -4.468166    .930433    -4.80   0.000    -6.291782   -2.644551
    ---------------------------------------------------------------------------------

    Code:
    margins gender, at(ownoccupation)
    
    Predictive margins                                      Number of obs = 16,357
    Model VCE: Robust
    
    1._predict: Pr(pref_occupation==professional), predict(pr outcome(1))
    2._predict: Pr(pref_occupation==government), predict(pr outcome(2))
    3._predict: Pr(pref_occupation==other), predict(pr outcome(3))
    4._predict: Pr(pref_occupation==not_specified), predict(pr outcome(4))
    5._predict: Pr(pref_occupation==not_mentioned), predict(pr outcome(5))
    6._predict: Pr(pref_occupation==not_working), predict(pr outcome(6))
    
    At: 1.ownoccupation = .4530782 (mean)
        2.ownoccupation = .0266553 (mean)
        3.ownoccupation = .2995048 (mean)
        4.ownoccupation = .2112857 (mean)
        5.ownoccupation = .0094761 (mean)
    
    ---------------------------------------------------------------------------------
                    |            Delta-method
                    |     Margin   std. err.      z    P>|z|     [95% conf. interval]
    ----------------+----------------------------------------------------------------
    _predict#gender |
            1#male  |   .0393393   .0022242    17.69   0.000     .0349799    .0436987
          1#female  |    .053918   .0027566    19.56   0.000     .0485151    .0593208
            2#male  |    .004937   .0006961     7.09   0.000     .0035727    .0063013
          2#female  |   .0285648   .0020404    14.00   0.000     .0245656     .032564
            3#male  |   .0559012   .0022573    24.76   0.000      .051477    .0603255
          3#female  |   .0663534   .0030328    21.88   0.000     .0604092    .0722976
            4#male  |   .0533316   .0024065    22.16   0.000     .0486149    .0580483
          4#female  |   .1184437   .0038993    30.38   0.000     .1108013    .1260862
            5#male  |   .8433899   .0038423   219.50   0.000     .8358591    .8509207
          5#female  |   .7324195   .0054253   135.00   0.000     .7217861    .7430528
            6#male  |   .0031009   .0004947     6.27   0.000     .0021314    .0040705
          6#female  |   .0003006   .0001325     2.27   0.023      .000041    .0005602
    ---------------------------------------------------------------------------------


    Code:
    marginsplot
    And this is the output I get
    Click image for larger version

Name:	Graph.jpg
Views:	1
Size:	34.1 KB
ID:	1776545



    What I’d like to do is plot a graph with own occupation (variable: ownoccupation) on the x-axis and have two separate lines representing males and females. If anyone has suggestions on how to structure the plot or fix my code, I’d really appreciate it!

    Thanks!

  • #2
    With so many outcomes, you might consider getting the marginal effect of gender (dydx()) so that you get a single line for the contrast between gender == male vs. gender == female. See below:
    Code:
    webuse sysdsn1
    mlogit insure i.male i.site c.age
    margins site, dydx(male)
    marginsplot, xdimension(site)
    Click image for larger version

Name:	Graph.png
Views:	1
Size:	73.0 KB
ID:	1776600

    Vs. all lines on one plot:
    Code:
    margins site, at(male = (0 1))
    marginsplot, xdimension(site)
    Click image for larger version

Name:	Graph2.png
Views:	1
Size:	94.1 KB
ID:	1776601

    Comment

    Working...
    X