Hi all,
I'm estimating a Heckman two-step model to assess the impact of pension freezes on firms’ environmental disclosure scores. In the second stage, the inverse Mills ratio has a large, negative, and significant coefficient (–133.39, p = 0.013).
Key variables:
Does such a large negative coefficient on the inverse Mills ratio seem plausible? Is this a problem, or could it reasonably suggest that unobserved factors associated with pension freezes are strongly linked to lower environmental disclosure?
Any insights on why the IMR effect might be so strong — and whether this should raise concerns — would be greatly appreciated.
these are the codes i used
clear all
cd "C:\Users\lenovo\Desktop\Data\source\DATA\work \thi rd analysis"
use "anothertry"
gen avarage = ( ENVIRON_DISCLOSURE_SCORE + SOCIAL_DISCLOSURE_SCORE ) / 2
winsor2 ENVIRON_DISCLOSURE_SCORE SOCIAL_DISCLOSURE_SCORE avarage , cut(1 99)
gen FREEZEXcso = hard_final_Exact_new * csopresence1
asdoc probit hard_final_Exact_new Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w board_size_w GenderRatiogenderratio_w independent_percentage_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w i.year i.ff_12 , robust cluster (id) nest replace drop(i.year i.ff_12 ) dec(4) save(qqqq)
predict lefthat, xb // Get the linear prediction
gen mills = normalden(lefthat) / normal(lefthat) // Generate the inverse Mill's ratio
asdoc reg ENVIRON_DISCLOSURE_SCORE_w hard_final_Exact_new csopresence1 FREEZEXcso Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w board_size_w GenderRatiogenderratio_w independent_percentage_w sustainability2_w SUSTAIBILITY_COMITEE_FU Fund_Status_w FUNDING_RATIO_w Platn_Size_w mills i.year i.ff_12 , robust cluster (id) nest replace drop(i.year i.ff_12 ) dec(4) save(qqqkkq)
Thanks in advance!
I'm estimating a Heckman two-step model to assess the impact of pension freezes on firms’ environmental disclosure scores. In the second stage, the inverse Mills ratio has a large, negative, and significant coefficient (–133.39, p = 0.013).
Key variables:
- hard_final_Exact_new: = 1 in the year a firm freezes its defined benefit (DB) pension plan for all employees, 0 otherwise.
- csopresence1: = 1 if the firm has a Chief Sustainability Officer (CSO) in a given year, 0 otherwise.
- FREEZEXcso: interaction between the two variables.
Does such a large negative coefficient on the inverse Mills ratio seem plausible? Is this a problem, or could it reasonably suggest that unobserved factors associated with pension freezes are strongly linked to lower environmental disclosure?
Any insights on why the IMR effect might be so strong — and whether this should raise concerns — would be greatly appreciated.
these are the codes i used
clear all
cd "C:\Users\lenovo\Desktop\Data\source\DATA\work \thi rd analysis"
use "anothertry"
gen avarage = ( ENVIRON_DISCLOSURE_SCORE + SOCIAL_DISCLOSURE_SCORE ) / 2
winsor2 ENVIRON_DISCLOSURE_SCORE SOCIAL_DISCLOSURE_SCORE avarage , cut(1 99)
gen FREEZEXcso = hard_final_Exact_new * csopresence1
asdoc probit hard_final_Exact_new Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w board_size_w GenderRatiogenderratio_w independent_percentage_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w i.year i.ff_12 , robust cluster (id) nest replace drop(i.year i.ff_12 ) dec(4) save(qqqq)
predict lefthat, xb // Get the linear prediction
gen mills = normalden(lefthat) / normal(lefthat) // Generate the inverse Mill's ratio
asdoc reg ENVIRON_DISCLOSURE_SCORE_w hard_final_Exact_new csopresence1 FREEZEXcso Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w board_size_w GenderRatiogenderratio_w independent_percentage_w sustainability2_w SUSTAIBILITY_COMITEE_FU Fund_Status_w FUNDING_RATIO_w Platn_Size_w mills i.year i.ff_12 , robust cluster (id) nest replace drop(i.year i.ff_12 ) dec(4) save(qqqkkq)
Thanks in advance!
HTML Code:
. asdoc probit hard_final_Exact_new Firm_Size_w ROA_w Leverage_w Market_book_four > _w Non_pension_CFO_w STD_CFO_w board_size_w GenderRatiogenderratio_w independent_pe > rcentage_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w i.year i.ff_12 , robust c > luster (id) nest replace drop(i.year i.ff_12 ) dec(4) save(qqqq) Iteration 0: Log pseudolikelihood = -381.41764 Iteration 1: Log pseudolikelihood = -349.64094 Iteration 2: Log pseudolikelihood = -346.70631 Iteration 3: Log pseudolikelihood = -346.66482 Iteration 4: Log pseudolikelihood = -346.66469 Iteration 5: Log pseudolikelihood = -346.66469 Probit regression Number of obs = 3,854 Wald chi2(41) = 95.97 Prob > chi2 = 0.0000 Log pseudolikelihood = -346.66469 Pseudo R2 = 0.0911 (Std. err. adjusted for 282 clusters in id) ------------------------------------------------------------------------------------------ | Robust hard_final_Exact_new | Coefficient std. err. z P>|z| [95% conf. interval] -------------------------+---------------------------------------------------------------- Firm_Size_w | -.1486931 .0793764 -1.87 0.061 -.304268 .0068818 ROA_w | 1.394501 1.266187 1.10 0.271 -1.08718 3.876183 Leverage_w | -.9995838 .4151587 -2.41 0.016 -1.81328 -.1858876 Market_book_four_w | .0046217 .0086523 0.53 0.593 -.0123365 .02158 Non_pension_CFO_w | -3.994935 1.690991 -2.36 0.018 -7.309216 -.6806539 STD_CFO_w | 3.08323 2.895561 1.06 0.287 -2.591966 8.758425 board_size_w | -.0078393 .0275714 -0.28 0.776 -.0618782 .0461997 GenderRatiogenderratio_w | -.311062 .6720613 -0.46 0.643 -1.628278 1.006154 independent_percentage_w | .4727935 .6556422 0.72 0.471 -.8122416 1.757829 Fund_Status_w | -3.97355 2.085994 -1.90 0.057 -8.062024 .1149231 FUNDING_RATIO_w | -.2610834 .4042837 -0.65 0.518 -1.053465 .5312982 Platn_Size_w | .0608101 .0651693 0.93 0.351 -.0669194 .1885397 | year | 2005 | -.2919346 .42794 -0.68 0.495 -1.130682 .5468125 2006 | -.0162893 .3777238 -0.04 0.966 -.7566145 .7240358 2007 | -.2363701 .4284376 -0.55 0.581 -1.076092 .6033522 2008 | .454851 .3243855 1.40 0.161 -.180933 1.090635 2009 | .6437069 .3145637 2.05 0.041 .0271733 1.26024 2010 | .4648595 .3274794 1.42 0.156 -.1769883 1.106707 2011 | .209522 .3635784 0.58 0.564 -.5030786 .9221227 2012 | .3991531 .3388834 1.18 0.239 -.2650462 1.063352 2013 | .4619265 .3408755 1.36 0.175 -.2061772 1.13003 2014 | .5627522 .3245501 1.73 0.083 -.0733542 1.198859 2015 | .5361479 .3424661 1.57 0.117 -.1350734 1.207369 2016 | .3776218 .3464051 1.09 0.276 -.3013198 1.056563 2017 | .4563485 .3514999 1.30 0.194 -.2325787 1.145276 2018 | .7855175 .3368549 2.33 0.020 .1252941 1.445741 2019 | .5433685 .3639084 1.49 0.135 -.169879 1.256616 2020 | .8101857 .3527143 2.30 0.022 .1188783 1.501493 2021 | .409564 .4195871 0.98 0.329 -.4128115 1.23194 2022 | .1266738 .4616397 0.27 0.784 -.7781234 1.031471 | ff_12 | 2 | .0650237 .2984135 0.22 0.828 -.519856 .6499033 3 | -.2066733 .2128754 -0.97 0.332 -.6239014 .2105547 4 | -.3422767 .3916597 -0.87 0.382 -1.109916 .4253622 5 | -.2263999 .2333209 -0.97 0.332 -.6837004 .2309006 6 | -.0542146 .23368 -0.23 0.817 -.5122188 .4037897 7 | .1257675 .4124482 0.30 0.760 -.6826161 .934151 8 | -.3136073 .2436409 -1.29 0.198 -.7911347 .1639201 9 | .4064531 .2035085 2.00 0.046 .0075838 .8053223 10 | -.1490405 .2554473 -0.58 0.560 -.649708 .351627 11 | .2807591 .22041 1.27 0.203 -.1512366 .7127549 12 | -.0448456 .2166022 -0.21 0.836 -.4693781 .379687 | _cons | -.9685873 .9632249 -1.01 0.315 -2.856473 .9192987 ------------------------------------------------------------------------------------------ Click to Open File: qqqq.doc . . predict lefthat, xb // Get the linear prediction (4122 missing values generated) . gen mills = normalden(lefthat) / normal(lefthat) // Generate the inverse Mill's ratio (4,122 missing values generated) . . . asdoc reg ENVIRON_DISCLOSURE_SCORE_w hard_final_Exact_new csopresence1 FREEZEXcso Firm_ > Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w board_ > size_w GenderRatiogenderratio_w independent_percentage_w sustainability2_w SUSTAIBILITY_ > COMITEE_FU Fund_Status_w FUNDING_RATIO_w Platn_Size_w mills i.year i.ff_12 , ro > bust cluster (id) nest replace drop(i.year i.ff_12 ) dec(4) save(qqqkkq) Linear regression Number of obs = 3,053 F(46, 251) = 60.40 Prob > F = 0.0000 R-squared = 0.6882 Root MSE = 12.677 (Std. err. adjusted for 252 clusters in id) ------------------------------------------------------------------------------------------ | Robust ENVIRON_DISCLOSURE_SCO~w | Coefficient std. err. t P>|t| [95% conf. interval] -------------------------+---------------------------------------------------------------- hard_final_Exact_new | 8.920114 3.485295 2.56 0.011 2.055963 15.78426 csopresence1 | 6.482304 1.253054 5.17 0.000 4.014465 8.950143 FREEZEXcso | 10.30082 5.88566 1.75 0.081 -1.29075 21.89239 Firm_Size_w | 16.805 7.064002 2.38 0.018 2.892727 30.71727 ROA_w | -188.2846 66.45055 -2.83 0.005 -319.1563 -57.4129 Leverage_w | 122.6556 48.26031 2.54 0.012 27.60882 217.7024 Market_book_four_w | -.6168643 .228682 -2.70 0.007 -1.067244 -.1664841 Non_pension_CFO_w | 522.4601 189.6096 2.76 0.006 149.0316 895.8886 STD_CFO_w | -349.5499 148.372 -2.36 0.019 -641.7627 -57.33712 board_size_w | 1.290604 .436255 2.96 0.003 .4314169 2.149791 GenderRatiogenderratio_w | 35.71305 16.04088 2.23 0.027 4.121182 67.30493 independent_percentage_w | -54.92927 23.29206 -2.36 0.019 -100.8021 -9.056474 sustainability2_w | .5414999 .0373389 14.50 0.000 .4679623 .6150374 SUSTAIBILITY_COMITEE_FU | 2.366581 1.184138 2.00 0.047 .0344671 4.698694 Fund_Status_w | 477.1368 186.8281 2.55 0.011 109.1864 845.0873 FUNDING_RATIO_w | 28.16416 13.19009 2.14 0.034 2.186802 54.14151 Platn_Size_w | -6.319805 2.957543 -2.14 0.034 -12.14457 -.4950405 mills | -133.3892 53.35121 -2.50 0.013 -238.4623 -28.31607 | year | 2006 | -31.80994 13.72755 -2.32 0.021 -58.8458 -4.774077 2007 | -4.085754 3.58242 -1.14 0.255 -11.14119 2.96968 2008 | -88.11516 36.49273 -2.41 0.016 -159.9861 -16.24418 2009 | -110.2062 45.46549 -2.42 0.016 -199.7487 -20.66372 2010 | -87.97598 36.99328 -2.38 0.018 -160.8328 -15.11919 2011 | -56.3718 24.86244 -2.27 0.024 -105.3374 -7.40622 2012 | -76.97707 33.90849 -2.27 0.024 -143.7585 -10.19564 2013 | -83.63576 36.86525 -2.27 0.024 -156.2404 -11.03111 2014 | -93.10664 41.60758 -2.24 0.026 -175.0511 -11.16216 2015 | -86.56858 40.33304 -2.15 0.033 -166.0029 -7.134258 2016 | -66.77477 32.86188 -2.03 0.043 -131.4949 -2.054605 2017 | -73.28445 36.5932 -2.00 0.046 -145.3533 -1.2156 2018 | -112.4621 52.15727 -2.16 0.032 -215.1837 -9.740401 2019 | -82.22986 40.63829 -2.02 0.044 -162.2654 -2.194366 2020 | -113.6532 53.25484 -2.13 0.034 -218.5365 -8.769923 2021 | -64.27849 34.37595 -1.87 0.063 -131.9806 3.423572 2022 | -29.20575 20.68805 -1.41 0.159 -69.95003 11.53854 | ff_12 | 2 | -14.28764 4.955029 -2.88 0.004 -24.04637 -4.528907 3 | 23.79015 10.37081 2.29 0.023 3.365261 44.21504 4 | 42.69021 17.53024 2.44 0.016 8.165093 77.21532 5 | 34.90489 11.15738 3.13 0.002 12.93088 56.8789 6 | 6.434335 3.873674 1.66 0.098 -1.194711 14.06338 7 | -20.0249 7.356159 -2.72 0.007 -34.51256 -5.537236 8 | 45.84821 15.51659 2.95 0.003 15.28891 76.40751 9 | -61.87624 20.05014 -3.09 0.002 -101.3642 -22.3883 10 | 21.75348 7.807923 2.79 0.006 6.376088 37.13087 11 | -41.42383 13.41106 -3.09 0.002 -67.83638 -15.01128 12 | 6.663091 3.655356 1.82 0.070 -.5359882 13.86217 | _cons | 211.2848 92.80652 2.28 0.024 28.506 394.0635 ------------------------------------------------------------------------------------------ Click to Open File: qqqkkq.doc . end of do-file
Comment