Hello,
I was wondering if anyone might be willing to provide some guidance on a question I have regarding the application of the arcsinh transformation.
Specifically, I am using a multinomial logistic regression model (mlogit), as my outcome variable is categorical. One of my independent variables, total household wealth, has a very high variance and includes negative values. I understand that the arcsinh transformation is often recommended as an alternative to log-transforming such variables, particularly when zero or negative values are present. However, I am unsure whether it is appropriate to use the arcsinh transformation in the context of a nonlinear model like mlogit.
Below, I’ve included the -dataex- output for the variables I'm using, including totalwealth_wave1 and the outcome variable _traj_Group.
To provide some additional context, I am using data from the Health and Retirement Study (HRS). I first estimated a group-based trajectory model using six waves of data (2012–2022) on the variables food_insecurity_wave1 through food_insecurity_wave6. Participants were assigned to one of three trajectory groups. I then used a multinomial logistic regression model to examine associations between trajectory group membership and several control variables: sex, education, veteran status, mother’s education, marital status, chronic disease, mental health, household income, and household wealth.
As noted, the issue is that the household wealth variable (totalwealth_wave1) has a very large standard deviation (shown below). I am considering applying the arcsinh transformation but wanted to confirm whether this approach is appropriate for use with the mlogit command.
Any advice or insights you could offer would be greatly appreciated.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(_traj_Group inc_d race) byte(male education veteran) float(mothered marital_status_wave1 chronicdisease_wave1 MentalHealth_wave1 totalwealth_wave1) double HouseholdIncome_wave1 1 0 1 0 5 0 1 4 2 1 350000 11808 1 0 1 0 3 0 0 4 0 0 1646599 354830.1554667724 1 0 1 0 4 0 1 2 0 0 850000 18724 1 0 1 1 5 1 1 1 2 0 4440000 129660 1 0 1 0 5 0 0 1 0 0 4440000 129660 1 0 4 0 5 0 1 4 2 0 1029774.8 145289 1 0 3 0 1 0 0 4 2 0 0 4164 1 0 1 1 5 1 0 4 1 0 2460000 54000 1 0 3 0 1 0 0 2 2 0 0 11376 3 0 2 0 3 0 0 1 1 0 0 18580.1933652527 1 0 1 0 4 0 1 4 1 0 15000 98462.84667842393 1 0 1 0 4 0 1 4 0 0 3896000 46526.875164932644 1 0 1 1 5 1 1 1 0 0 1390000 88200 1 0 1 0 1 0 1 4 1 0 690000 21588 1 0 4 0 5 0 0 1 2 0 194000 80400 1 0 4 1 5 1 0 1 2 1 194000 80400 1 0 1 0 3 0 0 1 0 0 544000 65780 1 0 1 0 5 0 1 1 0 0 245000 69720 1 0 1 1 5 1 1 1 1 0 686030 18190 1 0 1 0 3 0 1 1 0 0 686030 18190 1 0 1 1 5 0 0 1 3 0 411500 92556 1 0 1 0 5 0 1 1 0 1 411500 92556 1 0 2 0 1 0 0 4 2 0 190000 31443.22356979586 2 0 2 0 5 0 1 4 2 0 -2955 25506 1 0 2 0 3 0 0 4 0 0 4400 66770 1 0 2 1 3 1 1 1 2 1 320000 28960 1 0 2 0 3 0 1 1 0 0 320000 28960 1 0 3 0 3 0 1 1 0 0 1252000 39265 1 0 4 0 1 0 0 1 0 0 304000 62724 1 0 4 1 5 0 0 1 0 0 304000 62724 1 0 3 1 4 1 1 1 0 1 407000 19140 1 0 1 0 4 0 1 1 0 0 407000 19140 3 0 2 0 5 0 0 4 3 0 -5950 10140 3 0 4 0 4 0 0 4 0 0 -80500 35600 1 1 1 1 1 0 1 1 1 0 557000 28784 1 0 1 0 5 0 1 1 1 0 557000 28784 1 0 1 1 3 1 0 1 2 0 1052000 47926 1 0 2 0 4 0 0 1 2 0 194000 30000 1 0 1 1 5 1 1 1 2 0 1976291 179523.44600249556 1 0 3 0 3 0 0 1 1 0 103800 27375.3422452243 1 0 3 1 2 1 0 1 1 0 103800 27375.3422452243 1 0 2 0 1 0 0 4 2 0 0 10008 1 0 2 0 3 0 0 5 1 0 8000 11760 1 0 1 1 4 1 0 1 3 0 22050 51824 1 0 1 1 3 1 1 3 3 1 1080350 77840 1 0 1 0 1 0 1 3 1 0 1080350 77840 1 0 1 0 5 0 1 1 1 0 491000 60400 1 0 1 0 3 0 1 4 2 0 137740 35033 1 0 1 1 4 0 0 1 1 0 103500 27780 1 0 1 0 3 0 1 1 1 0 103500 27780 1 0 1 0 2 0 0 2 0 0 852000 14076 1 1 2 0 1 0 0 5 1 0 0 22460 1 0 2 0 4 0 1 4 2 0 50000 0 1 0 1 0 1 0 0 2 2 0 6000 17353 1 0 1 0 3 0 1 4 1 0 811281.9 15240 1 0 1 1 5 1 1 3 2 0 1748163 85054 1 0 1 1 5 0 0 1 1 1 762500 27200 1 0 3 0 1 0 0 1 2 0 153700 30580 1 0 1 0 4 0 0 2 0 0 163000 18264 1 0 2 0 3 0 0 4 3 0 800 15492 1 1 2 1 3 0 1 2 0 0 103135 16048 1 0 2 0 4 0 0 4 2 0 3150 17724 1 0 2 1 4 1 0 1 2 0 106000 109240 1 1 2 0 4 0 0 1 2 0 106000 109240 1 0 1 1 1 1 0 1 3 0 970000 73264 1 1 1 1 4 0 1 1 3 0 353000 76125 1 0 1 0 3 0 1 1 0 0 353000 76125 1 0 1 0 4 0 1 4 2 1 3493 14460 1 0 1 0 3 0 0 4 4 0 245000 40800 1 0 1 0 1 0 1 4 1 0 0 15912 1 0 1 1 5 0 1 1 1 0 771500 58564 1 0 1 0 1 0 0 1 3 0 151500 89200 1 0 1 1 3 0 1 1 0 0 100000 44452 1 0 1 0 3 0 0 1 2 0 100000 44452 1 0 1 0 5 0 1 4 1 0 70000 34600 1 0 1 0 5 0 1 1 1 0 3055575 98196 1 0 1 0 3 0 0 1 1 0 17500 23776 1 0 2 0 3 0 1 4 1 0 54000 42615 1 0 2 0 1 0 0 3 3 0 -16000 21240 1 0 1 0 5 0 0 1 1 0 812000 90148 2 0 2 0 4 0 1 4 2 0 -16000 29436.09564515772 1 0 2 0 4 0 0 2 1 0 113500 41258 1 0 2 0 2 0 0 4 1 0 80000 18140 1 0 2 0 1 0 0 5 3 0 0 10416 1 0 2 0 1 0 0 1 1 0 69000 31172 1 1 4 1 2 0 1 1 0 0 69000 31172 1 0 1 1 2 1 0 1 3 0 87000 41846 1 0 1 0 3 0 1 1 0 0 87000 41846 1 1 1 1 1 0 0 1 3 0 47800 24168 1 0 1 0 3 0 0 1 1 0 47800 24168 1 0 1 1 3 0 0 1 2 0 162000 75404 1 0 1 0 3 0 0 1 0 0 162000 75404 1 0 1 1 4 1 1 1 2 0 324000 33660 1 0 1 0 3 0 0 1 2 0 324000 33660 1 0 1 1 3 1 1 1 2 0 247200 43860 1 0 1 0 3 0 1 1 2 0 247200 43860 1 0 1 0 3 0 1 1 2 0 1851000 55524 1 0 1 1 4 1 1 1 3 0 1851000 55524 1 1 1 1 5 0 1 1 3 0 381000 86800 1 0 1 0 5 0 1 1 1 1 381000 86800 end label values inc_d inc_d label def inc_d 0 "No", modify label def inc_d 1 "Yes", modify label values race race label def race 1 "White", modify label def race 2 "Black", modify label def race 3 "Hispanic", modify label def race 4 "Other", modify label values male male label def male 0 "Female", modify label def male 1 "Male", modify label values education EDUC label def EDUC 1 "1.lt high-school", modify label def EDUC 2 "2.ged", modify label def EDUC 3 "3.high-school graduate", modify label def EDUC 4 "4.some college", modify label def EDUC 5 "5.college and above", modify label values veteran veteran label def veteran 0 "No", modify label def veteran 1 "Yes", modify label values mothered mothered label def mothered 0 "Less than High School", modify label def mothered 1 "High School or Higher", modify label values marital_status_wave1 married label def married 1 "Married", modify label def married 2 "Absent sopuse/Seperated/Divorced", modify label def married 3 "Partnered", modify label def married 4 "Widowed", modify label def married 5 "Never Married", modify label values MentalHealth_wave1 MH label def MH 0 "No", modify label def MH 1 "Had Mental Health Problems", modify
Code:
tabstat totalwealth_wave1, statistics(count mean min max p50 sd ) long Variable | N Mean Min Max p50 SD -------------+------------------------------------------------------------ totalwealt~1 | 8299 479734.3 -1495000 2.31e+07 197000 911117.1 --------------------------------------------------------------------------
Comment