Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Generalized Method of Moments Model (GMM) - advice

    Hello,

    I am working on an independent project and just wanted some advice on my model and producing results on Stata (this is my first time making a model from scratch). I am using the Arellano-Bond (Difference GMM) model to estimate the effect of tourism on housing affordability in Barcelona. My data looks like this:

    ----------------------- copy starting from the next line -----------------------
    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input int year str20 district float(housingaffordabilityindex hoteldensity) int(shorttermrental culturalpoints) float unemloymentrate int housingsupply float interestrate long district_id
    2014 "Ciutat Vella"         .000932405   27.0073  46 126  8634.667  17 2.7341666 1
    2015 "Ciutat Vella"         .001013596  29.44039  69 126   8004.25   1 2.3741667 1
    2016 "Ciutat Vella"         .001097946   29.6837  69 126   7210.75  12    2.0525 1
    2017 "Ciutat Vella"         .001216174 30.656935  70 126  6676.819   1      1.91 1
    2018 "Ciutat Vella"         .001084121 32.360096  74 126  6385.209  11 1.8441666 1
    2019 "Ciutat Vella"          .00109189 32.360096  74 126  6196.362  22      1.73 1
    2020 "Ciutat Vella"         .001011997 33.090023  74 126  8424.667  35    1.5725 1
    2021 "Ciutat Vella"         .000935094 33.090023  74 126  8131.417   8    1.4635 1
    2022 "Ciutat Vella"         .001074735 33.333332  74 126  5673.032   1    2.0575 1
    2023 "Ciutat Vella"         .001052432 33.333332  74 126   5645.63  22  3.898333 1
    2014 "Eixample"             .000842278 16.621984  19  88 14150.583  18 2.7341666 2
    2015 "Eixample"             .000910201 19.034853  95  88  12597.75  70 2.3741667 2
    2016 "Eixample"             .000978673 19.571045  95  88 11035.667  46    2.0525 2
    2017 "Eixample"             .001056482  20.24129  95  88  10077.89  50      1.91 2
    2018 "Eixample"              .00102939  21.58177 113  88  9425.247  64 1.8441666 2
    2019 "Eixample"             .001060102 21.849867 113  88  9272.884  68      1.73 2
    2020 "Eixample"             .001003529 21.983913 114  88  11854.75  59    1.5725 2
    2021 "Eixample"             .000942863  22.11796 114  88 10843.167  80    1.4635 2
    2022 "Eixample"             .001016199  22.25201 114  88  8064.494 121    2.0575 2
    2023 "Eixample"             .001042956  22.25201 114  88  8247.742  16  3.898333 2
    2014 "Gràcia"              .000882425  .9546539   6 136   6776.25   9 2.7341666 3
    2015 "Gràcia"              .000962306 1.1933174  15 136  6089.667  17 2.3741667 3
    2016 "Gràcia"              .001022907  1.431981  15 136  5313.667   8    2.0525 3
    2017 "Gràcia"              .001120988  1.431981  15 136 4843.2935  21      1.91 3
    2018 "Gràcia"              .001052632  1.909308  17 136 4585.6167  67 1.8441666 3
    2019 "Gràcia"              .001081541 2.1479714  17 136 4487.1157  28      1.73 3
    2020 "Gràcia"              .001019054 2.1479714  17 136   5786.25  18    1.5725 3
    2021 "Gràcia"              .000975351 2.1479714  17 136  5190.583  51    1.4635 3
    2022 "Gràcia"              .001040022 2.1479714  17 136 3954.8484  23    2.0575 3
    2023 "Gràcia"               .00106633 2.1479714  17 136 4005.5784   0  3.898333 3
    2014 "Sant Martí"          .000798853  3.176131   1  61 16451.416  57 2.7341666 4
    2015 "Sant Martí"          .000866238  3.272377   3  61 14850.667  68 2.3741667 4
    2016 "Sant Martí"           .00092733  3.272377   3  61 13135.083  75    2.0525 4
    2017 "Sant Martí"          .001014789 3.5611165   3  61  11998.69 105      1.91 4
    2018 "Sant Martí"          .000990403  3.657363   3  61   11241.9 197 1.8441666 4
    2019 "Sant Martí"          .001023878  3.657363   3  61 10834.918  60      1.73 4
    2020 "Sant Martí"          .000973183  3.753609   3  61  13497.25 214    1.5725 4
    2021 "Sant Martí"          .000940038  3.753609   3  61 12574.833  83    1.4635 4
    2022 "Sant Martí"          .000986251  3.849856   3  61   9970.16 119    2.0575 4
    2023 "Sant Martí"           .00102211  3.946102   3  61  9811.482  14  3.898333 4
    2014 "Sarrià-Sant Gervasi" .000971733 1.6072326   7 116      4945   9 2.7341666 5
    2015 "Sarrià-Sant Gervasi" .001055117 1.6574585  10 116      4478  20 2.3741667 5
    2016 "Sarrià-Sant Gervasi" .001130332 1.6574585  10 116  3912.917  21    2.0525 5
    2017 "Sarrià-Sant Gervasi" .001213814 1.6574585  10 116  3543.697   9      1.91 5
    2018 "Sarrià-Sant Gervasi" .001157595 1.7579106  10 116 3430.1316  25 1.8441666 5
    2019 "Sarrià-Sant Gervasi" .001161381 1.7579106  10 116  3404.865  39      1.73 5
    2020 "Sarrià-Sant Gervasi" .001100212 1.7579106  10 116   4224.25   7    1.5725 5
    2021 "Sarrià-Sant Gervasi" .001049509 1.8081366  10 116  3917.417  13    1.4635 5
    2022 "Sarrià-Sant Gervasi" .001104683 1.8081366  10 116 2998.6526  22    2.0575 5
    2023 "Sarrià-Sant Gervasi" .001152243 1.8081366  10 116   3144.29  17  3.898333 5
    end
    label values district_id district_id
    label def district_id 1 "Ciutat Vella", modify
    label def district_id 2 "Eixample", modify
    label def district_id 3 "Gràcia", modify
    label def district_id 4 "Sant Martí", modify
    label def district_id 5 "Sarrià-Sant Gervasi", modify

    where the main outcome variable is the housing affordability index (rental price per square km divided by average yearly income per person). Three main variables that are being used as a proxy for tourist volume are hotel density (per square km), the number of short-term rentals and the number of cultural points. The analysis is district-level and uses yearly data. The equation is:

    Affordability(i,t)​=α+β1​Affordability(i,t−1​)+β2​ HotelDensity(i,t​)+β3​STR(i,t​)+β4​CulturalPoints( i)+β5​Unemployment(i,t​)+β6​Housing Supply(i,t)​+β7​Interest Rate(t)+β8​Unemployment(i,t)​+ϵ(i,t​)
    where
    • i is the district
    • t is the year (2014–2023)
    • Lagged affordability (Affordabilityi,t−1Affordabilityi,t−1​) controls for persistence.
    • Tourism variables (HotelDensity, STR, Cultural Points (which only varies by district, not year)) are key factors.
    • Control variables (Housing Supply (count of Construction of new housing), Unemployment Rate, Interest Rate (varies by time only)) capture economic and supply-side dynamics.
    This is the code I am using and the results I am getting:

    Code:
    encode district, generate(district_id)
    
    xtset district_id year
    
    Panel variable: district_id (strongly balanced)
     Time variable: year, 2014 to 2023
             Delta: 1 unit
     xtabond housingaffordabilityindex hoteldensity shorttermrental culturalpoints unemloymentrate housingsupply inter
    > estrate 
    note: culturalpoints omitted from div() because of collinearity.
    
    Arellano–Bond dynamic panel-data estimation     Number of obs     =         40
    Group variable: district_id                     Number of groups  =          5
    Time variable: year
                                                    Obs per group:
                                                                  min =          8
                                                                  avg =          8
                                                                  max =          8
    
    Number of instruments =     36                  Wald chi2(7)      =   28862.01
                                                    Prob > chi2       =     0.0000
    One-step results
    -------------------------------------------------------------------------------------------
    housingaffordabilityindex | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    --------------------------+----------------------------------------------------------------
    housingaffordabilityindex |
                          L1. |   .3780462   .1039021     3.64   0.000     .1744019    .5816905
                              |
                 hoteldensity |  -.0000309   .0000128    -2.41   0.016    -.0000561   -5.74e-06
              shorttermrental |  -1.87e-07   2.89e-06    -0.06   0.948    -5.85e-06    5.48e-06
               culturalpoints |   .0000122   1.60e-06     7.61   0.000     9.03e-06    .0000153
              unemloymentrate |  -3.14e-08   6.99e-09    -4.49   0.000    -4.51e-08   -1.77e-08
                housingsupply |  -8.22e-08   2.18e-07    -0.38   0.706    -5.09e-07    3.45e-07
                 interestrate |  -2.49e-06   .0000108    -0.23   0.818    -.0000236    .0000186
                        _cons |          0  (omitted)
    -------------------------------------------------------------------------------------------
    Instruments for differenced equation
            GMM-type: L(2/.).housingaffordabilityindex
            Standard: D.hoteldensity D.shorttermrental D.unemloymentrate D.housingsupply
                      D.interestrate
    Instruments for level equation
            Standard: _cons
    I have three questions:
    1) I do not understand why the constant is being omitted.
    2) Is there a way I can improve the model, or get better results?
    3) What kind of robustness checks will be appropriate for this model/

    Thanks,
    Anisha
Working...
X