Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Dynamic quantile panel with gmm

    My data characteristics include N=63 and T=4:
    dependence variable: gini
    independence variables: financial inclusion (fii), life expectation (life), aging (% pop above 65 years old), government expenditure (gov), lag of gini (l.gini), grdp per capita (grdp_pc) and interaction variable = aging * fii.
    In which, potential endogenous variables are l(-1).gini, fii, grdp_pc and gov. instrumental variables are l(-1).prdp_pc, l(-1) fii, distance (distance to banking institutions) and aging.
    I've already completed DGMM estimator and trying to conduct Dynamic quantile panel estimator (like the previous research below) but i cannot find suitable Stata command to estimate, almost of them not for lag variable or not for endogeneity phenomenon. Can you give me suggestion potential Command.
    Many thanks.
    Click image for larger version

Name:	Screen Shot 2025-03-09 at 19.06.38.png
Views:	1
Size:	536.1 KB
ID:	1774059

  • #2
    Can anyone help me, please?

    Comment


    • #3
      Can you give the reference of the paper from where you obtained that table?

      Comment


      • #4
        Originally posted by Joao Santos Silva View Post
        Can you give the reference of the paper from where you obtained that table?
        Joao Santos Silva here is my reference paper 10.1016/j.jimonfin.2012.04.006

        Comment


        • #5
          Thank you for this. Apparently they use a method presented in a working paper by one of the authors (Hsin-Yi Lin), but I could not find that document and therefore cannot comment on its adequacy. I suggest you contact the author.

          Comment


          • #6
            Joao Santos Silva, I tried to use these commands
            gen l_rp90p10=l.rp90p10 (also for grdp_pc and fii)
            qregpd rp90p10 l_rp90p10 fii1 grdp_pc gov life aging, quantile (0.5) id(id) fix(year) optimize(mcmc) noisy draws(1000) burn(500) arate(.5) instruments(l_rp90p10 fii1 grdp_pc gov l_grdp_pc l_fii aging distance)

            I'm not sure if it can solve the endogeneity problem and why the same command gives many different results (as below). How to fix that?

            qregpd rp90p10 l_rp90p10 fii1 grdp_pc gov life aging,quantile (0.50) id(id) fix(year) optimize(mcmc) noisy draws(1000) burn(500) arate(.5) instruments(l_rp90p10 fii1 grdp_pc gov l_grdp_pc l_fii aging distance)
            Adaptive MCMC optimization
            ................................................. 50: f(x) = -4.06010887
            ................................................. 100: f(x) = -5.68701796
            ................................................. 150: f(x) = -4.28468105
            ................................................. 200: f(x) = -4.88320876
            ................................................. 250: f(x) = -1.63606038
            ................................................. 300: f(x) = -4.81047711
            ................................................. 350: f(x) = -.71299085
            ................................................. 400: f(x) = -1.94310026
            ................................................. 450: f(x) = -2.79680232
            ................................................. 500: f(x) = -.618481789
            ................................................. 550: f(x) = -2.5250e-26
            ................................................. 600: f(x) = -1.83519297
            Quantile Regression for Panel Data (QRPD)
            Number of obs: 189
            Number of groups: 63
            Min obs per group: 3
            Max obs per group: 3
            ------------------------------------------------------------------------------
            rp90p10 | Coefficient Std. err. z P>|z| [95% conf. interval]
            -------------+----------------------------------------------------------------
            l_rp90p10 | -.0799095 .3491866 -0.23 0.819 -.7643027 .6044838
            fii1 | .8143741 1.421435 0.57 0.567 -1.971586 3.600335
            grdp_pc | 7.016767 2.683872 2.61 0.009 1.756475 12.27706
            gov | .4609649 1.010419 0.46 0.648 -1.51942 2.441349
            life | -157.2481 60.15768 -2.61 0.009 -275.155 -39.34121
            aging | 4.30844 1.443006 2.99 0.003 1.480201 7.136679
            ------------------------------------------------------------------------------

            qregpd rp90p10 l_rp90p10 fii1 grdp_pc gov life aging,quantile (0.50) id(id) fix(year) optimize(mcmc) noisy draws(1000) burn(500) arate(.5) instruments(l_rp90p10 fii1 grdp_pc gov l_grdp_pc l_fii aging distance)
            Adaptive MCMC optimization
            ................................................. 50: f(x) = -2.68325984
            ................................................. 100: f(x) = -.922401285
            ................................................. 150: f(x) = -1.66940218
            ................................................. 200: f(x) = -1.52082186
            ................................................. 250: f(x) = -1.02889808
            ................................................. 300: f(x) = -1.9560406
            ................................................. 350: f(x) = -2.12334952
            ................................................. 400: f(x) = -1.37927087
            ................................................. 450: f(x) = -3.38216991
            ................................................. 500: f(x) = -1.30946883
            ................................................. 550: f(x) = -1.96205492
            ................................................. 600: f(x) = -1.4333009
            Quantile Regression for Panel Data (QRPD)
            Number of obs: 189
            Number of groups: 63
            Min obs per group: 3
            Max obs per group: 3
            ------------------------------------------------------------------------------
            rp90p10 | Coefficient Std. err. z P>|z| [95% conf. interval]
            -------------+----------------------------------------------------------------
            l_rp90p10 | -.4874328 1.275709 -0.38 0.702 -2.987776 2.012911
            fii1 | 69.58705 120.8059 0.58 0.565 -167.1881 306.3622
            grdp_pc | 12.27815 19.25332 0.64 0.524 -25.45767 50.01396
            gov | -43.07006 79.03985 -0.54 0.586 -197.9853 111.8452
            life | -2425.099 3922.333 -0.62 0.536 -10112.73 5262.532
            aging | 329.9499 536.9262 0.61 0.539 -722.406 1382.306
            ------------------------------------------------------------------------------

            Comment


            • #7
              Dear LEE CHAN,

              I am afraid I am not very familiar it that command and I have concerns about the interpretability of the results of the method it implements.

              Best wishes,

              Joao

              Comment


              • #8
                Joao Santos Silva thanks for your help. one last question, can you suggest me any command that can solve the endogeneity problem (with T=4 and N=63) in panel quantile regression?

                Comment


                • #9
                  Unfortunately, I cannot.

                  Comment

                  Working...
                  X