please i have two variable i need to check the multicollinearity between them
1. csopresence1 independent variable is binary variable [ is coded as 1 if the firm has a CSO and 0 otherwise
2. csopresence1XWorkforceScore moderator variable
i have high multicollinearity between csopresence1 independent variable and csopresence1XWorkforceScore moderator variable
does this mean that mean our result is wrong or what?
Thanks
1. csopresence1 independent variable is binary variable [ is coded as 1 if the firm has a CSO and 0 otherwise
2. csopresence1XWorkforceScore moderator variable
i have high multicollinearity between csopresence1 independent variable and csopresence1XWorkforceScore moderator variable
does this mean that mean our result is wrong or what?
Thanks
HTML Code:
reg hard_final_Exact_new csopresence1 CSOXWorkforceScore Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING > _RATIO_w Platn_Size_w CSR_Committee WorkforceScore_w Environmental_Score_w Source | SS df MS Number of obs = 3,150 -------------+---------------------------------- F(17, 3132) = 2.35 Model | .935998249 17 .055058721 Prob > F = 0.0013 Residual | 73.230351 3,132 .023381338 R-squared = 0.0126 -------------+---------------------------------- Adj R-squared = 0.0073 Total | 74.1663492 3,149 .02355235 Root MSE = .15291 --------------------------------------------------------------------------------------- hard_final_Exact_new | Coefficient Std. err. t P>|t| [95% conf. interval] ----------------------+---------------------------------------------------------------- csopresence1 | .0617797 .0221089 2.79 0.005 .0184303 .1051291 csopresence1XWorkforceScore | -.0005919 .0002924 -2.02 0.043 -.0011652 -.0000187 Firm_Size_w | -.0006714 .0037406 -0.18 0.858 -.0080056 .0066629 ROA_w | .1508008 .0717624 2.10 0.036 .0100947 .2915069 Leverage_w | -.0509017 .0213967 -2.38 0.017 -.0928547 -.0089486 Market_book_four_w | -.0001519 .0004231 -0.36 0.720 -.0009815 .0006778 Non_pension_CFO_w | -.2827189 .0875633 -3.23 0.001 -.4544062 -.1110315 STD_CFO_w | .059265 .1691524 0.35 0.726 -.2723958 .3909259 Board_Independence_w | .000179 .0003103 0.58 0.564 -.0004294 .0007874 BoardSize_w | -.0006049 .0014291 -0.42 0.672 -.003407 .0021972 Gender_Diversity_w | 1.53e-06 .0003147 0.00 0.996 -.0006155 .0006186 Fund_Status_w | -.3121349 .1166176 -2.68 0.007 -.5407897 -.0834802 FUNDING_RATIO_w | -.0037862 .0211474 -0.18 0.858 -.0452504 .037678 Platn_Size_w | -.0027324 .0031926 -0.86 0.392 -.0089923 .0035274 CSR_Committee | .0053732 .0074643 0.72 0.472 -.0092623 .0200086 WorkforceScore_w | .0002057 .0001653 1.24 0.213 -.0001185 .0005299 Environmental_Score_w | -.0000664 .0001571 -0.42 0.673 -.0003744 .0002416 _cons | .0462305 .0438337 1.05 0.292 -.0397151 .1321761 --------------------------------------------------------------------------------------- . vif Variable | VIF 1/VIF -------------+---------------------- CSOXWorkfo~e | 15.11 0.066191 csopresence1 | 13.78 0.072576 Non_pensio~w | 3.62 0.276141 Platn_Size_w | 3.52 0.284138 Firm_Size_w | 3.37 0.296557 ROA_w | 3.37 0.296923 Environmen~w | 2.26 0.442813 Fund_Statu~w | 2.14 0.466307 WorkforceS~w | 2.13 0.469199 FUNDING_RA~w | 1.81 0.551573 CSR_Commit~e | 1.56 0.639474 BoardSize_w | 1.31 0.761307 Gender_Div~w | 1.24 0.805756 Leverage_w | 1.20 0.835067 STD_CFO_w | 1.18 0.850150 Board_Inde~w | 1.13 0.885105 Market_boo~w | 1.12 0.894002 -------------+---------------------- Mean VIF | 3.52 .
Comment