Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • using biprobit when we have two expected endogenous variable

    Hi please I'm using biprobit because hard_final_Exact_new and csopresence1 are binary variable

    when i run the code it give me that end of do-file varlist not allowed

    can you advice me where is the problem and how can i solve it

    HTML Code:
      .
    end of do-file
    
    . do "C:\Users\lenovo\AppData\Local\Temp\STD5f90_000000.tmp"
    
    . biprobit (hard_final_Exact_new =  csopresence1 CSOXWorkforceScore Firm_Size_w   ROA_w    
    >   Leverage_w   Market_book_four_w   Non_pension_CFO_w   STD_CFO_w  Board_Independence_w Bo
    > ardSize_w Gender_Diversity_w   Fund_Status_w  FUNDING_RATIO_w  Platn_Size_w     CSR_Commit
    > tee   Environmental_Score_w  WorkforceScore_w   csravarage_w i.year    i.ff_12 ) (csoprese
    > nce1 =  Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w Board_
    > Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w  
    > CSR_Committee  Environmental_Score_w  WorkforceScore_w  csravarage_w  CSO_Percentage i.yea
    > r i.ff_12)(CSOXWorkforceScore =  Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pensi
    > on_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity_w  Fund_Status_w FUND
    > ING_RATIO_w Platn_Size_w  CSR_Committee   Environmental_Score_w  WorkforceScore_w   csrava
    > rage_w CSO_Percentage secondIV  i.year i.ff_12), vce(cluster id)
    varlist not allowed
    r(101);
    
    end of do-file
    
    r(101);
    Last edited by hussein bataineh; 03 Mar 2025, 08:38.

  • #2
    It looks like you specified three equations. biprobit fits bivariate probit models and, thus, only supports two equations. I suggest to have a look at
    Code:
    help eprobit
    as well as the corresponding manual entry. eprobit can fit models with more than one endogenous regressors, here is an example:
    Code:
    . webuse class10
    (Class of 2010 profile)
    
    . eprobit graduate i.roommate, endog(hsgpa   = income i.hscomp)            ///
                                   endog(program = i.campus i.scholar, probit) ///
                                   endog(income  = i.campus)
    
    Iteration 0:  Log likelihood = -9157.2688  (not concave)
    Iteration 1:  Log likelihood = -9156.7783  (backed up)
    Iteration 2:  Log likelihood =  -9156.614  
    Iteration 3:  Log likelihood = -9156.6119  
    Iteration 4:  Log likelihood = -9156.5911  
    Iteration 5:  Log likelihood = -9156.5856  
    Iteration 6:  Log likelihood = -9156.5793  
    Iteration 7:  Log likelihood = -9156.5772  
    Iteration 8:  Log likelihood = -9156.5756  
    Iteration 9:  Log likelihood = -9156.5753  
    Iteration 10: Log likelihood = -9156.5751  
    Iteration 11: Log likelihood = -9156.5751  
    
    Extended probit regression                              Number of obs =  2,500
                                                            Wald chi2(4)  =  22.77
    Log likelihood = -9156.5751                             Prob > chi2   = 0.0001
    
    ------------------------------------------------------------------------------
                 | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
    graduate     |
        roommate |
            Yes  |   .2649872   .1070472     2.48   0.013     .0551785    .4747959
           hsgpa |    .991704   .5127353     1.93   0.053    -.0132387    1.996647
       1.program |   .3013238   .2576345     1.17   0.242    -.2036306    .8062782
          income |   .0915139   .4532201     0.20   0.840    -.7967812    .9798089
           _cons |  -3.352342   3.600962    -0.93   0.352     -10.4101    3.705413
    -------------+----------------------------------------------------------------
    program      |
          campus |
            Yes  |   .7429411   .0746664     9.95   0.000     .5965976    .8892846
                 |
         scholar |
            Yes  |    .867744    .056963    15.23   0.000     .7560986    .9793894
           _cons |  -.8101765   .0724318   -11.19   0.000    -.9521401   -.6682128
    -------------+----------------------------------------------------------------
    hsgpa        |
          income |   .0886254   .0747613     1.19   0.236     -.057904    .2351548
                 |
          hscomp |
       Moderate  |  -.1350668   .0114787   -11.77   0.000    -.1575646    -.112569
           High  |  -.2265422   .0190798   -11.87   0.000     -.263938   -.1891464
                 |
           _cons |   2.572057    .407984     6.30   0.000     1.772423     3.37169
    -------------+----------------------------------------------------------------
    income       |
          campus |
            Yes  |  -.2135974   .1699571    -1.26   0.209    -.5467071    .1195124
           _cons |   5.635327   .1562698    36.06   0.000     5.329044     5.94161
    -------------+----------------------------------------------------------------
     var(e.hsgpa)|   .0844054   .0580701                      .0219155    .3250791
    var(e.income)|   9.513223   .2690743                      9.000199    10.05549
    -------------+----------------------------------------------------------------
    corr(e.pro~m,|
      e.graduate)|    .314269   .3712271     0.85   0.397    -.4478857    .8119082
    corr(e.hsgpa,|
      e.graduate)|   .2356404   .6700412     0.35   0.725     -.817857    .9261494
    corr(e.inc~e,|
      e.graduate)|   .2580026   1.200357     0.21   0.830    -.9783053    .9923989
    corr(e.hsgpa,|
       e.program)|   .0856338   .1626911     0.53   0.599    -.2311275    .3859806
    corr(e.inc~e,|
       e.program)|  -.2394089   .0248277    -9.64   0.000    -.2874341   -.1901829
    corr(e.inc~e,|
         e.hsgpa)|  -.4330377   .6450717    -0.67   0.502     -.965397    .7977869
    ------------------------------------------------------------------------------

    Comment


    • #3
      please i use eprobit but it give me

      ote: csopresence1 omitted because of collinearity.
      note: CSOXWorkforceScore omitted because of collinearity.

      csopresence1 and CSOXWorkforceScore is presented in the begging of the table but they are omitted at the end of the table .

      also I'm not sure how can i define endogeneity test from this table

      HTML Code:
      eprobit (hard_final_Exact_new csopresence1 CSOXWorkforceScore Firm_Size_w ROA_w Leverage_w Market_book_four_w   Non_pension_CFO_w STD_CFO_w Board_Independence
      > _w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w CSR_Committee Environmental_Score_w WorkforceScore_w i.year i.ff_12),endogenous(c
      > sopresence1 = Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FU
      > NDING_RATIO_w Platn_Size_w CSR_Committee Environmental_Score_w WorkforceScore_w CSO_Percentage i.year i.ff_12) endogenous(CSOXWorkforceScore = Firm_Size_w ROA
      > _w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w  Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w C
      > SR_Committee Environmental_Score_w WorkforceScore_w secondIV i.year i.ff_12)
      note: csopresence1 omitted because of collinearity.
      note: CSOXWorkforceScore omitted because of collinearity.
      
      Iteration 0:  Log likelihood = -13204.545  
      Iteration 1:  Log likelihood = -13121.909  
      Iteration 2:  Log likelihood = -13114.688  
      Iteration 3:  Log likelihood = -13114.629  
      Iteration 4:  Log likelihood = -13114.555  
      Iteration 5:  Log likelihood = -13114.553  
      Iteration 6:  Log likelihood = -13114.553  
      
      Extended probit regression                              Number of obs =  3,150
                                                              Wald chi2(44) = 493.09
      Log likelihood = -13114.553                             Prob > chi2   = 0.0000
      
      -------------------------------------------------------------------------------------------------------------------
                                                        | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
      --------------------------------------------------+----------------------------------------------------------------
      hard_final_Exact_new                              |
                                           csopresence1 |    3.62564   .6545321     5.54   0.000     2.342781      4.9085
                                     CSOXWorkforceScore |  -.0195763   .0106287    -1.84   0.065    -.0404082    .0012556
                                            Firm_Size_w |  -.0202174   .0612674    -0.33   0.741    -.1402993    .0998645
                                                  ROA_w |   1.405963   1.027171     1.37   0.171    -.6072552    3.419181
                                             Leverage_w |  -.7194351   .3146144    -2.29   0.022    -1.336068   -.1028022
                                     Market_book_four_w |   -.004823   .0047826    -1.01   0.313    -.0141967    .0045508
                                      Non_pension_CFO_w |  -2.348013   1.358883    -1.73   0.084    -5.011374    .3153483
                                              STD_CFO_w |  -3.253714   2.175345    -1.50   0.135    -7.517311    1.009883
                                   Board_Independence_w |   .0009876   .0042611     0.23   0.817    -.0073639    .0093391
                                            BoardSize_w |  -.0312087   .0178173    -1.75   0.080    -.0661299    .0037126
                                     Gender_Diversity_w |  -.0055562   .0043716    -1.27   0.204    -.0141243    .0030119
                                          Fund_Status_w |  -4.132857   1.415855    -2.92   0.004    -6.907881   -1.357833
                                        FUNDING_RATIO_w |    -.29619   .3073107    -0.96   0.335    -.8985079    .3061279
                                           Platn_Size_w |  -.1099762   .0513196    -2.14   0.032    -.2105608   -.0093916
                                          CSR_Committee |  -.1011871   .1019336    -0.99   0.321    -.3009734    .0985991
                                  Environmental_Score_w |  -.0042896   .0020408    -2.10   0.036    -.0082894   -.0002898
                                       WorkforceScore_w |   .0035072   .0035897     0.98   0.329    -.0035286    .0105429
                                                        |
                                                   year |
                                                  2007  |  -.0193727    .328358    -0.06   0.953    -.6629425    .6241971
                                                  2008  |   .1731632   .2753203     0.63   0.529    -.3664548    .7127811
                                                  2009  |   .3452598   .2815986     1.23   0.220    -.2066633     .897183
                                                  2010  |   .2713281   .2793476     0.97   0.331    -.2761832    .8188395
                                                  2011  |   .0477404   .2847521     0.17   0.867    -.5103635    .6058443
                                                  2012  |   .1714409    .286481     0.60   0.550    -.3900516    .7329333
                                                  2013  |   .0380858   .2917381     0.13   0.896    -.5337104    .6098821
                                                  2014  |   .0975896   .2911974     0.34   0.738    -.4731467     .668326
                                                  2015  |    .066806   .2925848     0.23   0.819    -.5066497    .6402617
                                                  2016  |  -.1708587   .2939168    -0.58   0.561    -.7469251    .4052076
                                                  2017  |   -.149642   .2990734    -0.50   0.617     -.735815    .4365311
                                                  2018  |  -.0485731   .3139577    -0.15   0.877    -.6639189    .5667728
                                                  2019  |  -.2282967   .3083104    -0.74   0.459    -.8325741    .3759806
                                                  2020  |  -.0168951   .3296028    -0.05   0.959    -.6629048    .6291145
                                                  2021  |  -.2526893   .3285798    -0.77   0.442    -.8966939    .3913153
                                                  2022  |  -.1562966   .4272527    -0.37   0.715    -.9936964    .6811033
                                                        |
                                                  ff_12 |
                                                     2  |   .3305003   .2518557     1.31   0.189    -.1631277    .8241283
                                                     3  |   .3671818   .1897286     1.94   0.053    -.0046794    .7390429
                                                     4  |   .3005963   .2860438     1.05   0.293    -.2600392    .8612318
                                                     5  |   .1542638   .1852734     0.83   0.405    -.2088654     .517393
                                                     6  |    .335421   .1655866     2.03   0.043     .0108772    .6599649
                                                     7  |   .3979261   .2643474     1.51   0.132    -.1201854    .9160376
                                                     8  |   .3794511   .2207636     1.72   0.086    -.0532376    .8121397
                                                     9  |   .5663671   .1938926     2.92   0.003     .1863447    .9463896
                                                    10  |   .2198385   .1792963     1.23   0.220    -.1315758    .5712528
                                                    11  |   .5720728   .1723374     3.32   0.001     .2342977     .909848
                                                    12  |   .3499237   .1909227     1.83   0.067    -.0242779    .7241253
                                                        |
                                           csopresence1 |          0  (omitted)
                                     CSOXWorkforceScore |          0  (omitted)
                                                  _cons |  -.1999581   .7682271    -0.26   0.795    -1.705656    1.305739
      --------------------------------------------------+----------------------------------------------------------------
      csopresence1                                      |
                                            Firm_Size_w |  -.0242525   .0119557    -2.03   0.043    -.0476851   -.0008198
                                                  ROA_w |   -.104083   .2023663    -0.51   0.607    -.5007137    .2925477
                                             Leverage_w |    .188254   .0648786     2.90   0.004     .0610944    .3154136
                                     Market_book_four_w |   .0016101   .0011016     1.46   0.144     -.000549    .0037691
                                      Non_pension_CFO_w |  -.0047269   .2512092    -0.02   0.985    -.4970879    .4876342
                                              STD_CFO_w |   1.738426   .4486992     3.87   0.000     .8589921     2.61786
                                   Board_Independence_w |   .0011274   .0008279     1.36   0.173    -.0004952    .0027501
                                            BoardSize_w |   .0116387   .0037798     3.08   0.002     .0042303     .019047
                                     Gender_Diversity_w |   .0029264   .0009073     3.23   0.001      .001148    .0047047
                                          Fund_Status_w |   .7796628   .3186903     2.45   0.014     .1550413    1.404284
                                        FUNDING_RATIO_w |   .0032378   .0594915     0.05   0.957    -.1133634    .1198389
                                           Platn_Size_w |   .0599893   .0094045     6.38   0.000     .0415568    .0784218
                                          CSR_Committee |   .0681514   .0199811     3.41   0.001     .0289891    .1073137
                                  Environmental_Score_w |   .0016468   .0004345     3.79   0.000     .0007952    .0024984
                                       WorkforceScore_w |   .0013187   .0004113     3.21   0.001     .0005125    .0021248
                                         CSO_Percentage |   .7553426   .0503176    15.01   0.000     .6567219    .8539633
                                                        |
                                                   year |
                                                  2007  |  -.0463646   .0440523    -1.05   0.293    -.1327055    .0399763
                                                  2008  |  -.0197847   .0439185    -0.45   0.652    -.1058634     .066294
                                                  2009  |  -.0612077   .0444622    -1.38   0.169     -.148352    .0259366
                                                  2010  |  -.0791662    .045183    -1.75   0.080    -.1677233    .0093908
                                                  2011  |  -.0697056   .0457815    -1.52   0.128    -.1594357    .0200244
                                                  2012  |   -.057152   .0463029    -1.23   0.217     -.147904    .0336001
                                                  2013  |  -.0487728   .0463615    -1.05   0.293    -.1396397     .042094
                                                  2014  |  -.0623158   .0468293    -1.33   0.183    -.1540995     .029468
                                                  2015  |  -.0648011   .0475338    -1.36   0.173    -.1579656    .0283634
                                                  2016  |   -.046683   .0483587    -0.97   0.334    -.1414644    .0480984
                                                  2017  |  -.0698096   .0490828    -1.42   0.155      -.16601    .0263909
                                                  2018  |   -.078786   .0506476    -1.56   0.120    -.1780534    .0204814
                                                  2019  |  -.1187675   .0524668    -2.26   0.024    -.2216005   -.0159344
                                                  2020  |  -.1429304   .0546785    -2.61   0.009    -.2500983   -.0357624
                                                  2021  |  -.1731701   .0565263    -3.06   0.002    -.2839596   -.0623806
                                                  2022  |  -.1476812   .0797664    -1.85   0.064    -.3040205    .0086582
                                                        |
                                                  ff_12 |
                                                     2  |  -.0808951   .0565663    -1.43   0.153     -.191763    .0299728
                                                     3  |   -.080876   .0335659    -2.41   0.016    -.1466639   -.0150881
                                                     4  |   -.060874   .0459147    -1.33   0.185    -.1508651    .0291171
                                                     5  |  -.0523346   .0369463    -1.42   0.157     -.124748    .0200788
                                                     6  |   .0237859   .0360985     0.66   0.510    -.0469658    .0945377
                                                     7  |   .0858057   .0616916     1.39   0.164    -.0351077     .206719
                                                     8  |   -.082434   .0347522    -2.37   0.018     -.150547    -.014321
                                                     9  |   .0017417   .0473273     0.04   0.971     -.091018    .0945015
                                                    10  |   .0512381   .0373062     1.37   0.170    -.0218807    .1243568
                                                    11  |  -.0031056   .0400661    -0.08   0.938    -.0816338    .0754225
                                                    12  |    .005702   .0364474     0.16   0.876    -.0657336    .0771375
                                                        |
                                                  _cons |  -.5871001   .1251618    -4.69   0.000    -.8324127   -.3417874
      --------------------------------------------------+----------------------------------------------------------------
      CSOXWorkforceScore                                |
                                            Firm_Size_w |   -1.45258   .8895303    -1.63   0.102    -3.196027    .2908674
                                                  ROA_w |  -17.08271   15.05493    -1.13   0.257    -46.58982    12.42441
                                             Leverage_w |   13.94534   4.829811     2.89   0.004     4.479083    23.41159
                                     Market_book_four_w |   .0485275   .0819527     0.59   0.554    -.1120968    .2091519
                                      Non_pension_CFO_w |   24.49099   18.68842     1.31   0.190    -12.13765    61.11962
                                              STD_CFO_w |   114.3302   33.37992     3.43   0.001     48.90674    179.7536
                                   Board_Independence_w |   .0960169   .0615946     1.56   0.119    -.0247063    .2167401
                                            BoardSize_w |   1.053613   .2811936     3.75   0.000     .5024837    1.604742
                                     Gender_Diversity_w |   .2863913   .0674799     4.24   0.000     .1541331    .4186495
                                          Fund_Status_w |   46.56486   23.70617     1.96   0.050     .1016229    93.02809
                                        FUNDING_RATIO_w |   2.398658   4.426382     0.54   0.588    -6.276891    11.07421
                                           Platn_Size_w |   4.031717   .6997755     5.76   0.000     2.660183    5.403252
                                          CSR_Committee |   2.735231   1.486323     1.84   0.066    -.1779081    5.648369
                                  Environmental_Score_w |   .1310309   .0323238     4.05   0.000     .0676775    .1943843
                                       WorkforceScore_w |   .1023211   .0319825     3.20   0.001     .0396366    .1650056
                                               secondIV |   .8351057   .0380885    21.93   0.000     .7604537    .9097578
                                                        |
                                                   year |
                                                  2007  |  -3.021009    3.27464    -0.92   0.356    -9.439185    3.397168
                                                  2008  |  -.6574135   3.256744    -0.20   0.840    -7.040515    5.725688
                                                  2009  |  -3.481136   3.293277    -1.06   0.290     -9.93584    2.973568
                                                  2010  |   -4.56494   3.341156    -1.37   0.172    -11.11349    1.983606
                                                  2011  |  -3.752765   3.375139    -1.11   0.266    -10.36792    2.862386
                                                  2012  |  -3.218531   3.403883    -0.95   0.344    -9.890019    3.452956
                                                  2013  |  -3.046026   3.394636    -0.90   0.370     -9.69939    3.607339
                                                  2014  |   -3.73461   3.415044    -1.09   0.274    -10.42797    2.958753
                                                  2015  |   -4.73432   3.446644    -1.37   0.170    -11.48962    2.020977
                                                  2016  |  -2.883719   3.487807    -0.83   0.408    -9.719696    3.952257
                                                  2017  |  -4.236793    3.51604    -1.20   0.228    -11.12811    2.654519
                                                  2018  |   -6.02447    3.59402    -1.68   0.094    -13.06862     1.01968
                                                  2019  |  -9.070023   3.702171    -2.45   0.014    -16.32614   -1.813902
                                                  2020  |  -10.46992   3.834513    -2.73   0.006    -17.98543   -2.954413
                                                  2021  |  -12.98153   3.959538    -3.28   0.001    -20.74208   -5.220975
                                                  2022  |  -11.26388   5.760981    -1.96   0.051    -22.55519      .02744
                                                        |
                                                  ff_12 |
                                                     2  |  -1.603671   4.208402    -0.38   0.703    -9.851987    6.644645
                                                     3  |  -6.117639   2.464838    -2.48   0.013    -10.94863   -1.286645
                                                     4  |  -6.475988   3.375053    -1.92   0.055    -13.09097    .1389936
                                                     5  |  -4.931746   2.738931    -1.80   0.072    -10.29995    .4364602
                                                     6  |   4.234956   2.637026     1.61   0.108    -.9335198    9.403432
                                                     7  |   7.313542   4.566509     1.60   0.109    -1.636651    16.26374
                                                     8  |  -6.006869   2.526608    -2.38   0.017    -10.95893   -1.054809
                                                     9  |  -1.588215   3.488903    -0.46   0.649    -8.426341     5.24991
                                                    10  |   5.530014   2.724785     2.03   0.042     .1895333    10.87049
                                                    11  |  -.0330502   2.940761    -0.01   0.991    -5.796836    5.730736
                                                    12  |   2.892394   2.641661     1.09   0.274    -2.285166    8.069954
                                                        |
                                                  _cons |     -51.68   9.282641    -5.57   0.000    -69.87364   -33.48636
      --------------------------------------------------+----------------------------------------------------------------
                                     var(e.csopresence1)|   .1544736    .003894                       .147027    .1622974
                               var(e.CSOXWorkforceScore)|   854.9292   21.57317                      813.6751    898.2749
      --------------------------------------------------+----------------------------------------------------------------
             corr(e.csopresence1,e.hard_final_Exact_new)|  -.8209715   .1127438    -7.28   0.000    -.9505654   -.4478186
       corr(e.CSOXWorkforceScore,e.hard_final_Exact_new)|  -.7458797   .1224931    -6.09   0.000    -.9060009    -.399007
               corr(e.CSOXWorkforceScore,e.csopresence1)|   .9552211   .0015624   611.37   0.000     .9520543    .9581832
      -------------------------------------------------------------------------------------------------------------------
      
      .
      end of do-file
      
      .

      Comment


      • #4
        Regarding the variables csopresence1 and CSOXWorkforceScore,notice that eprobit adds the endogenous regressors to the outcome equation automatically. Since you have added them manually, they now appeared in the outcome equation twice and so one of each is dropped.

        Testing the correlation among error terms of the three equations provides an endogeneity test. The pairwise correlations are shown at the bottom of the output table. To test endogeneity for the whole system, you could perform a joint test on these correlations like so:
        Code:
        . webuse class10
        (Class of 2010 profile)
        
        . 
        . eprobit graduate i.roommate, endog(hsgpa   = income i.hscomp)            ///
        >                              endog(program = i.campus i.scholar, probit)
        
        Iteration 0:  Log likelihood = -2887.0183  
        Iteration 1:  Log likelihood = -2881.6235  
        Iteration 2:  Log likelihood =   -2881.52  
        Iteration 3:  Log likelihood = -2881.5197  
        Iteration 4:  Log likelihood = -2881.5197  
        
        Extended probit regression                             Number of obs =   2,500
                                                               Wald chi2(3)  = 1030.62
        Log likelihood = -2881.5197                            Prob > chi2   =  0.0000
        
        --------------------------------------------------------------------------------------------
                                   | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
        ---------------------------+----------------------------------------------------------------
        graduate                   |
                          roommate |
                              Yes  |   .2553803   .0528329     4.83   0.000     .1518297    .3589308
                             hsgpa |    4.22006    .148054    28.50   0.000     3.929879    4.510241
                         1.program |   .3732847   .1573866     2.37   0.018     .0648127    .6817567
                             _cons |  -12.43725   .4840316   -25.70   0.000    -13.38593   -11.48856
        ---------------------------+----------------------------------------------------------------
        program                    |
                            campus |
                              Yes  |    .736175   .0737572     9.98   0.000     .5916134    .8807365
                                   |
                           scholar |
                              Yes  |   .8783584   .0570291    15.40   0.000     .7665834    .9901333
                             _cons |  -.8053548   .0721709   -11.16   0.000    -.9468072   -.6639024
        ---------------------------+----------------------------------------------------------------
        hsgpa                      |
                            income |   .0495944   .0016795    29.53   0.000     .0463026    .0528862
                                   |
                            hscomp |
                         Moderate  |  -.1019225   .0118928    -8.57   0.000     -.125232    -.078613
                             High  |  -.1798728   .0193535    -9.29   0.000     -.217805   -.1419405
                                   |
                             _cons |   2.760418   .0128848   214.24   0.000     2.735164    2.785672
        ---------------------------+----------------------------------------------------------------
                       var(e.hsgpa)|   .0688874   .0019571                      .0651563    .0728321
        ---------------------------+----------------------------------------------------------------
         corr(e.program,e.graduate)|   .3145515   .0949262     3.31   0.001     .1185469    .4869622
           corr(e.hsgpa,e.graduate)|  -.4916316   .0459043   -10.71   0.000    -.5762686    -.396561
            corr(e.hsgpa,e.program)|  -.0125938   .0266912    -0.47   0.637    -.0648255    .0397067
        --------------------------------------------------------------------------------------------
        
        . 
        . test (_b[/corr(e.program,e.graduate)] = 0) ///
        >      (_b[/corr(e.hsgpa,e.graduate)]   = 0) ///
        >      (_b[/corr(e.hsgpa,e.program)]    = 0)
        
         ( 1)  [/]corr(e.program,e.graduate) = 0
         ( 2)  [/]corr(e.hsgpa,e.graduate) = 0
         ( 3)  [/]corr(e.hsgpa,e.program) = 0
        
                   chi2(  3) =  146.67
                 Prob > chi2 =    0.0000
        If unsure about the parameter handles, replay your results using the coeflegend option, that is:
        Code:
        eprobit, coeflegend

        Comment


        • #5
          thanks for you advice can you please advice me how i can added

          robust cluster (id)

          i tried many way but non of them worked

          Comment


          • #6
            For problems like these, simply look at the help file which shows all the options available for a given command, including available variance estimators. In your case, you would add
            Code:
            ... , ... vce(cluster id)

            Comment


            • #7
              actually i run it but it show an error

              HTML Code:
              eprobit (hard_final_Exact_new  Firm_Size_w ROA_w Leverage_w Market_book_four_w   Non_pension_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity
              > _w Fund_Status_w FUNDING_RATIO_w Platn_Size_w CSR_Committee Environmental_Score_w WorkforceScore_w i.year i.ff_12),endogenous(csopresence1 = Firm_Size_w ROA_w
              >  Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w CSR_
              > Committee Environmental_Score_w WorkforceScore_w CSO_Percentage i.year i.ff_12) endogenous(CSOXWorkforceScore = Firm_Size_w ROA_w Leverage_w Market_book_four_
              > w Non_pension_CFO_w STD_CFO_w  Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w CSR_Committee Environmental_Scor
              > e_w WorkforceScore_w secondIV i.year i.ff_12) , vce(cluster id)
              invalid 'vce' 
              r(198);
              
              end of do-file

              Comment


              • #8
                please i added vce(cluster id) for the endogenous variable but i could not added it for the outcome equation . is there a reason and can we added them

                Thanks

                eprobit (hard_final_Exact_new Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w CSR_Committee Environmental_Score_w WorkforceScore_w i.year i.ff_12) ,endogenous(csopresence1 = Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w CSR_Committee Environmental_Score_w WorkforceScore_w CSO_Percentage i.year i.ff_12)vce (cluster id) endogenous(CSOXWorkforceScore = Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w CSR_Committee Environmental_Score_w WorkforceScore_w secondIV i.year i.ff_12) vce (cluster id)
                Last edited by hussein bataineh; 06 Mar 2025, 11:49.

                Comment


                • #9
                  The chosen variance estimator applies to the entire system, yielding a full variance-covariance matrix. It would not make a lot of sense to use different variance estimators for each of the equations, certainly not in the given full maximum likelihood context. Thus, the vce() option can only be specified once, and the specification applies to the whole system of equations.

                  Comment


                  • #10
                    THANKS joerg

                    Comment

                    Working...
                    X