Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • 2SLS , if the first stage is probit model and the second stage is probit model

    Hi please i need to apply 2SLS where my first stage is probit and the second stage is probit . i used these code and im not sure if they are correct


    asdoc ivregress 2sls hard_final_Exact_new Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w CSR_Committee SustainabilityScore_w i.year i.ff_12 (csopresence1 = CSO_Percentage) , first robust cluster (id) replace nest drop( i.year i.ff_12 ) dec(4) save(msss)


    estat first, forcenonrobust
    estat endogenous csopresence1



  • #2
    Dear Hussein,
    I can't say much about your code without knowing anything about your data. However, when you use ivregress 2sls, you are not estimating a probit model, but a linear probability model. If both hard_final_Exact_new Firm_Size_w and csopresence1 are binary (this is what I think you mean by 'first and second stage is probit') and you want to estimate a probit model using a two-step procedure, then control function estimation is probably what you should be using. This is implemented by cfprobit (official Stata, available for StataNow users only) and cfbinout probit (available from ssc). ivprobit (without option twostep) implements joint ML estimation. Best wishes, Harald

    Comment


    • #3
      Sorry, you should use biprobit instead of ivprobit to estimate the model by joint maximum likelihood.

      Comment


      • #4
        biprobit will work, or cfprobit if you have v18.

        Comment


        • #5
          hi thanks for help actually my hard_final_Exact_new and csopresence1 are binary

          are using ivprobit correct as it good results

          does using these command is right then

          ivprobit hard_final_Exact_new Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_ CSR_Committee SustainabilityScore_w i.year i.ff_12 (csopresence1 = CSO_Percentage), twostep

          Comment


          • #6
            help ivprobit ("Both estimators assume that the endogenous covariates are continuous and so are not appropriate for use with discrete endogenous covariates.")

            Comment


            • #7
              please i run biprobit . I'm not sure ,how we can present first stage and related tests such as Endogeneity test and F-statistics .








              HTML Code:
              . biprobit (hard_final_Exact_new = Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_ CSR_Committee Sustain
              > abilityScore_w i.year i.ff_12 csopresence1)  (csopresence1 = CSO_Percentage), robust
              
              Fitting comparison equation 1:
              
              Iteration 0:  Log pseudolikelihood = -358.54602  
              Iteration 1:  Log pseudolikelihood =   -329.264  
              Iteration 2:  Log pseudolikelihood = -326.78258  
              Iteration 3:  Log pseudolikelihood = -326.74249  
              Iteration 4:  Log pseudolikelihood = -326.74237  
              Iteration 5:  Log pseudolikelihood = -326.74237  
              
              Fitting comparison equation 2:
              
              Iteration 0:  Log pseudolikelihood = -1925.9727  
              Iteration 1:  Log pseudolikelihood = -1705.2604  
              Iteration 2:  Log pseudolikelihood = -1704.8319  
              Iteration 3:  Log pseudolikelihood = -1704.8319  
              
              Comparison:   Log pseudolikelihood = -2031.5742
              
              Fitting full model:
              
              Iteration 0:  Log pseudolikelihood = -2031.5742  (not concave)
              Iteration 1:  Log pseudolikelihood = -2031.5152  (backed up)
              Iteration 2:  Log pseudolikelihood = -2030.9562  
              Iteration 3:  Log pseudolikelihood = -2030.1775  
              Iteration 4:  Log pseudolikelihood = -2030.1553  
              Iteration 5:  Log pseudolikelihood = -2030.1553  
              
              Seemingly unrelated bivariate probit                    Number of obs =  3,167
                                                                      Wald chi2(43) = 563.40
              Log pseudolikelihood = -2030.1553                       Prob > chi2   = 0.0000
              
              ---------------------------------------------------------------------------------------
                                    |               Robust
                                    | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
              ----------------------+----------------------------------------------------------------
              hard_final_Exact_new  |
                        Firm_Size_w |  -.1346719   .0745992    -1.81   0.071    -.2808836    .0115398
                              ROA_w |   1.946918   1.329454     1.46   0.143    -.6587632      4.5526
                         Leverage_w |  -.7282058    .378328    -1.92   0.054    -1.469715    .0133033
                 Market_book_four_w |  -.0006798   .0085561    -0.08   0.937    -.0174495    .0160899
                  Non_pension_CFO_w |   -4.35556   1.799502    -2.42   0.016    -7.882518   -.8286009
                          STD_CFO_w |   .8498084   2.625005     0.32   0.746    -4.295107    5.994723
               Board_Independence_w |   .0038096   .0050628     0.75   0.452    -.0061134    .0137326
                        BoardSize_w |  -.0212048   .0238728    -0.89   0.374    -.0679947    .0255851
                 Gender_Diversity_w |  -.0038736    .006345    -0.61   0.542    -.0163096    .0085624
                      Fund_Status_w |  -3.688263   1.946652    -1.89   0.058     -7.50363    .1271043
                    FUNDING_RATIO_w |   -.548908   .3974585    -1.38   0.167    -1.327912    .2300963
                       Platn_Size_w |    .029275   .0661141     0.44   0.658    -.1003064    .1588563
                      CSR_Committee |   .1171023    .126457     0.93   0.354    -.1307489    .3649535
              SustainabilityScore_w |   .0023581   .0034981     0.67   0.500     -.004498    .0092143
                                    |
                               year |
                              2007  |  -.1893796   .4824649    -0.39   0.695    -1.134993    .7562342
                              2008  |   .3703923   .4019114     0.92   0.357    -.4173396    1.158124
                              2009  |   .5153293   .3911218     1.32   0.188    -.2512553    1.281914
                              2010  |   .3656944   .4108336     0.89   0.373    -.4395247    1.170914
                              2011  |   .0708561    .428661     0.17   0.869    -.7693042    .9110163
                              2012  |   .3657888   .4044102     0.90   0.366    -.4268405    1.158418
                              2013  |   .2803688   .4104458     0.68   0.495    -.5240901    1.084828
                              2014  |    .360477   .4095485     0.88   0.379    -.4422233    1.163177
                              2015  |   .3537351   .4137397     0.85   0.393    -.4571797     1.16465
                              2016  |   .0784589    .423008     0.19   0.853    -.7506216    .9075393
                              2017  |   .1262666   .4213481     0.30   0.764    -.6995605    .9520937
                              2018  |   .3577145   .4153034     0.86   0.389    -.4562652    1.171694
                              2019  |  -.0183752   .4474583    -0.04   0.967    -.8953773    .8586269
                              2020  |   .2577183   .4336884     0.59   0.552    -.5922953    1.107732
                              2021  |  -.1472962   .4668719    -0.32   0.752    -1.062348    .7677558
                              2022  |   .1538622    .541226     0.28   0.776    -.9069212    1.214646
                                    |
                              ff_12 |
                                 2  |   .1149295   .3525047     0.33   0.744     -.575967     .805826
                                 3  |   .0547361   .2282032     0.24   0.810    -.3925339    .5020061
                                 4  |   .0371616   .3826385     0.10   0.923     -.712796    .7871192
                                 5  |  -.0179077   .2321963    -0.08   0.939    -.4730041    .4371887
                                 6  |   .2384004    .231927     1.03   0.304    -.2161682     .692969
                                 7  |   .6368554   .3566165     1.79   0.074       -.0621    1.335811
                                 8  |   .0149633    .273617     0.05   0.956    -.5213161    .5512428
                                 9  |   .6683979   .2549403     2.62   0.009     .1687241    1.168072
                                10  |   .1631866   .2537802     0.64   0.520    -.3342135    .6605867
                                11  |   .6306283    .234109     2.69   0.007     .1717832    1.089474
                                12  |   .1210401   .2556985     0.47   0.636    -.3801198       .6222
                                    |
                       csopresence1 |   1.244748   .4130107     3.01   0.003     .4352615    2.054234
                              _cons |  -1.053993   .6796596    -1.55   0.121    -2.386101    .2781156
              ----------------------+----------------------------------------------------------------
              csopresence1          |
                     CSO_Percentage |   2.942302   .1429113    20.59   0.000     2.662201    3.222403
                              _cons |  -1.364117   .0474742   -28.73   0.000    -1.457165   -1.271069
              ----------------------+----------------------------------------------------------------
                            /athrho |   -.581801     .25471    -2.28   0.022    -1.081023   -.0825787
              ----------------------+----------------------------------------------------------------
                                rho |  -.5239732   .1847799                     -.7935783   -.0823915
              ---------------------------------------------------------------------------------------
              Wald test of rho=0: chi2(1) = 5.21744                     Prob > chi2 = 0.0224

              Comment


              • #8
                Here's a shot, though I may be corrected.

                At present, I don't think non-linear models have the standard set of tests for instruments. The last line indicates endogeneity. With only one exclusion, you wouldn't get the Sargan test in any case.

                In IV linear regression, the rule of thumb is F>10. On the exclusion, you have chi2 = 20.59^2 = 423.95 [or testparm CSO_Percentage, equation(csopresence1)], so the "equivalent F" would be (1+1)*423.95 > 10, so passes easily.

                You might think about some of the Xs being in the second equation (e.g., the FE).

                Comment


                • #9
                  Actually, you want chi2 > 20. (k+1)*10.

                  Comment


                  • #10
                    Thanks professor George Ford I'm not sure how can i present all results of the first stage

                    Comment


                    • #11
                      what results are you talking about.

                      Comment


                      • #12

                        What I mean I want to present the whole regression for the first stage, as I need to present the first stage and the second stage.

                        Comment


                        • #13
                          Your first stage is just the csopresence results (CSO_Percentage and _cons). A little thin in my opinion.

                          Comment

                          Working...
                          X