Hi all, I have a quesiotn about staggered DiD and would appreciate your help.
I am running two models about the adoption of two different policies on two different datasets. The treatment group in each model is a set of firms, each firm belongs to only one treatment group.
In both models, I control for time FE, Treatment group FE, and firm FE. My question is why in the first model all Treatment group FE and most of firm FEs will be kept in the model after estimation, but in the second one, all treatment group FEs will be omitted because of collinearity.
The collinearity happens because of the inclusion of firm FE. If it is a matter of collinearity, it must be the same in both cases. Why isn't it? To me, the structure of the model in both cases is exactly the same...
Models are attached below. cik is firms' identifier.
Model 1:
and Model 2:
Thank you,
Mahtab
I am running two models about the adoption of two different policies on two different datasets. The treatment group in each model is a set of firms, each firm belongs to only one treatment group.
In both models, I control for time FE, Treatment group FE, and firm FE. My question is why in the first model all Treatment group FE and most of firm FEs will be kept in the model after estimation, but in the second one, all treatment group FEs will be omitted because of collinearity.
The collinearity happens because of the inclusion of firm FE. If it is a matter of collinearity, it must be the same in both cases. Why isn't it? To me, the structure of the model in both cases is exactly the same...
Models are attached below. cik is firms' identifier.
Model 1:
Code:
. reg Y Dit i.fyear i.Treatment_Group i.cik, vce(cluster cik) note: 794367.cik omitted because of collinearity. note: 861884.cik omitted because of collinearity. note: 907471.cik omitted because of collinearity. note: 1022079.cik omitted because of collinearity. note: 1048286.cik omitted because of collinearity. note: 1059556.cik omitted because of collinearity. note: 1267238.cik omitted because of collinearity. note: 1310067.cik omitted because of collinearity. note: 1341318.cik omitted because of collinearity. note: 1481792.cik omitted because of collinearity. note: 1688568.cik omitted because of collinearity. note: 1944013.cik omitted because of collinearity. Linear regression Number of obs = 1,170 F(13, 113) = . Prob > F = . R-squared = 0.8999 Root MSE = .09011 (Std. err. adjusted for 114 clusters in cik) ------------------------------------------------------------------------------ | Robust Y | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- Dit | .0280684 .0125965 2.23 0.028 .0031124 .0530243 | fyear | 2011 | -.0027005 .0091129 -0.30 0.768 -.0207548 .0153539 2012 | -.0128803 .0131201 -0.98 0.328 -.0388737 .013113 2013 | -.0208039 .0157418 -1.32 0.189 -.0519913 .0103836 2014 | -.0127386 .0166187 -0.77 0.445 -.0456633 .020186 2015 | -.0176427 .0164005 -1.08 0.284 -.050135 .0148495 2016 | -.0158391 .0183057 -0.87 0.389 -.052106 .0204279 2017 | -.0099859 .018531 -0.54 0.591 -.0466991 .0267273 2018 | -.0109125 .0206403 -0.53 0.598 -.0518045 .0299796 2019 | -.0041595 .0199703 -0.21 0.835 -.0437242 .0354052 2020 | .0054283 .0201148 0.27 0.788 -.0344228 .0452794 2021 | -.0034748 .0226715 -0.15 0.878 -.0483912 .0414415 2022 | .0336464 .0554807 0.61 0.545 -.0762708 .1435637 2023 | .0835204 .0492043 1.70 0.092 -.0139621 .1810029 | Treatment_Group | 2010 | .5461846 .0067165 81.32 0.000 .5328781 .5594911 2011 | .6583245 .0067165 98.02 0.000 .645018 .671631 2012 | .8085951 .0077708 104.06 0.000 .7931996 .8239905 2013 | .129572 .0067165 19.29 0.000 .1162654 .1428785 2014 | .2153763 .0067165 32.07 0.000 .2020697 .2286828 2015 | .5402799 .0067165 80.44 0.000 .5269734 .5535864 2016 | .2684022 .0075935 35.35 0.000 .2533582 .2834462 2017 | .7142837 .0088295 80.90 0.000 .6967908 .7317766 2018 | .6121213 .0075935 80.61 0.000 .5970773 .6271653 2019 | .5901068 .0067165 87.86 0.000 .5768002 .6034133 2020 | -.0752191 .0079652 -9.44 0.000 -.0909997 -.0594386 2021 | .6172731 .0074409 82.96 0.000 .6025313 .6320149 | cik | 4457 | .1513102 .0042898 35.27 0.000 .1428114 .159809 4962 | -.4800946 .0035268 -136.13 0.000 -.4870818 -.4731074 7536 | -.4374177 .0011647 -375.56 0.000 -.4397252 -.4351102 8670 | .3191581 .0027083 117.84 0.000 .3137925 .3245237 8868 | -.0477404 .009486 -5.03 0.000 -.0665339 -.0289469 9389 | .3618816 .0100514 36.00 0.000 .3419678 .3817953 12927 | .451338 .001124 401.55 0.000 .4491112 .4535648 14272 | .3447496 .006826 50.51 0.000 .3312262 .3582731 .................. ..................... 789019 | .4309862 .006826 63.14 0.000 .4174628 .4445097 794367 | 0 (omitted) 860748 | .8515967 .0050526 168.55 0.000 .8415865 .8616069 861884 | 0 (omitted) 885639 | -.3109489 .0069952 -44.45 0.000 -.3248077 -.2970901 894671 | .7622711 .0081693 93.31 0.000 .7460862 .778456 902274 | -.2795213 .003396 -82.31 0.000 -.2862493 -.2727933 907471 | 0 (omitted) 4980 | .2634658 .001124 234.40 0.000 .2612389 .2656926 1022079 | 0 (omitted) 1024478 | .2228396 .006826 32.65 0.000 .2093161 .236363 1032208 | -.0950473 .006826 -13.92 0.000 -.1085708 -.0815239 1035002 | .5532175 .006826 81.05 0.000 .5396941 .566741 1039828 | .7657814 .006826 112.19 0.000 .7522579 .7793048 1041061 | .111915 .006826 16.40 0.000 .0983915 .1254384 1048286 | 0 (omitted) 1049782 | .6380497 .0036464 174.98 0.000 .6308255 .6452738 1059556 | 0 (omitted) 1105705 | .0289986 .0037411 7.75 0.000 .0215868 .0364105 1122304 | .2095745 .0059417 35.27 0.000 .1978029 .2213461 1122976 | -.3695582 .0054198 -68.19 0.000 -.3802959 -.3588205 1124198 | .1101359 .0036464 30.20 0.000 .1029117 .11736 1135971 | .7953738 .0128755 61.77 0.000 .7698652 .8208824 1143068 | .8521349 .0149329 57.06 0.000 .8225502 .8817197 1267238 | 0 (omitted) 1275283 | .8132747 .0117016 69.50 0.000 .7900916 .8364578 1310067 | 0 (omitted) 1326160 | .1657204 .0047975 34.54 0.000 .1562158 .1752251 1331875 | -.1925357 .0047975 -40.13 0.000 -.2020404 -.1830311 1341318 | 0 (omitted) 1373835 | .2368121 .0117016 20.24 0.000 .213629 .2599951 1378946 | .5941125 .0077564 76.60 0.000 .5787456 .6094794 1481792 | 0 (omitted) 1604028 | .5350732 .0036464 146.74 0.000 .5278491 .5422973 1688568 | 0 (omitted) 1944013 | 0 (omitted) | _cons | .1599165 .0190851 8.38 0.000 .1221054 .1977276 ------------------------------------------------------------------------------ .
Code:
. reg Y Dit i.fyear i.cik i.Treatment_group , vce(cluster cik) note: 2000.breachyear omitted because of collinearity. note: 2006.breachyear omitted because of collinearity. note: 2007.breachyear omitted because of collinearity. note: 2008.breachyear omitted because of collinearity. note: 2010.breachyear omitted because of collinearity. note: 2011.breachyear omitted because of collinearity. note: 2012.breachyear omitted because of collinearity. note: 2013.breachyear omitted because of collinearity. note: 2014.breachyear omitted because of collinearity. note: 2015.breachyear omitted because of collinearity. note: 2016.breachyear omitted because of collinearity. note: 2017.breachyear omitted because of collinearity. note: 2018.breachyear omitted because of collinearity. note: 2019.breachyear omitted because of collinearity. note: 2020.breachyear omitted because of collinearity. note: 2021.breachyear omitted because of collinearity. note: 2022.breachyear omitted because of collinearity. Linear regression Number of obs = 2,648 F(13, 371) = . Prob > F = . R-squared = 0.9235 Root MSE = .08574 (Std. err. adjusted for 372 clusters in cik) ------------------------------------------------------------------------------ | Robust Y | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- Dit | .0261452 .0111887 2.34 0.020 .004144 .0481464 | fyear | 2011 | -.016803 .0066192 -2.54 0.012 -.0298189 -.003787 2012 | -.0184841 .0071518 -2.58 0.010 -.0325472 -.004421 2013 | -.0128866 .0095036 -1.36 0.176 -.0315742 .005801 2014 | -.0118556 .0100748 -1.18 0.240 -.0316664 .0079552 2015 | -.0117674 .0116588 -1.01 0.313 -.0346931 .0111582 2016 | -.012376 .0121683 -1.02 0.310 -.0363036 .0115516 2017 | -.0209325 .0128857 -1.62 0.105 -.0462706 .0044057 2018 | -.0225738 .0131857 -1.71 0.088 -.0485019 .0033544 2019 | -.0260919 .013323 -1.96 0.051 -.05229 .0001062 2020 | -.0184946 .0131037 -1.41 0.159 -.0442613 .0072722 2021 | -.0379104 .014371 -2.64 0.009 -.0661692 -.0096516 2022 | .0400507 .0323113 1.24 0.216 -.0234855 .1035868 2023 | .0709154 .0336523 2.11 0.036 .0047422 .1370886 | cik | 3146 | .6446921 .0083495 77.21 0.000 .6282738 .6611104 4281 | -.2054449 .0009324 -220.34 0.000 -.2072784 -.2036115 6845 | .4167743 .0015272 272.89 0.000 .4137712 .4197775 7084 | -.0832123 .0023131 -35.98 0.000 -.0877607 -.078664 7789 | .6237169 .0039269 158.83 0.000 .6159951 .6314388 8146 | .4724508 .0038127 123.92 0.000 .4649536 .479948 8818 | -.1622675 .0008506 -190.76 0.000 -.1639402 -.1605948 8868 | -.2456957 .0055676 -44.13 0.000 -.2566438 -.2347477 9092 | .1093303 .0035347 30.93 0.000 .1023798 .1162808 9389 | .1798618 .0035329 50.91 0.000 .1729148 .1868087 9892 | -.03082 .0074153 -4.16 0.000 -.0454013 -.0162387 10795 | .0053476 .0037296 1.43 0.152 -.0019861 .0126814 .................................. .................................. . .. . 1556727 | .3657087 .0053536 68.31 0.000 .3551814 .3762359 1571508 | .6557614 .0088063 74.47 0.000 .6384449 .673078 1598428 | .0544575 .0030316 17.96 0.000 .0484962 .0604188 1602658 | .5810628 .0037107 156.59 0.000 .5737661 .5883595 1604028 | .3623358 .0030316 119.52 0.000 .3563745 .3682971 1616318 | .4820546 .0042532 113.34 0.000 .4736912 .490418 1624794 | .1532119 .0069113 22.17 0.000 .1396216 .1668021 1635718 | .2698516 .0038399 70.28 0.000 .2623009 .2774024 1636286 | .6456811 .0055899 115.51 0.000 .6346892 .656673 1646383 | .3994345 .0042532 93.91 0.000 .3910711 .4077979 1666700 | .0895345 .005811 15.41 0.000 .0781078 .1009612 1674335 | -.2330401 .0069113 -33.72 0.000 -.2466304 -.2194498 1681206 | .3586259 .0069113 51.89 0.000 .3450356 .3722162 1688568 | -.1637423 .0047005 -34.84 0.000 -.1729852 -.1544994 1711269 | .5271598 .0053257 98.98 0.000 .5166875 .537632 1746109 | .6480332 .0065936 98.28 0.000 .6350678 .6609987 1750735 | .6112961 .0065936 92.71 0.000 .5983306 .6242615 1754226 | .6160019 .0079011 77.96 0.000 .6004653 .6315385 1760965 | -.1186772 .005811 -20.42 0.000 -.1301038 -.1072505 1766368 | .5841928 .0121748 47.98 0.000 .5602525 .6081332 1767837 | .4929741 .0096057 51.32 0.000 .4740857 .5118626 1790982 | -.166308 .0065936 -25.22 0.000 -.1792735 -.1533426 1849867 | .4509114 .0156182 28.87 0.000 .4202 .4816227 1850398 | .4301086 .0170735 25.19 0.000 .3965356 .4636816 | Treatment_Group| 2000 | 0 (omitted) 2006 | 0 (omitted) 2007 | 0 (omitted) 2008 | 0 (omitted) 2010 | 0 (omitted) 2011 | 0 (omitted) 2012 | 0 (omitted) 2013 | 0 (omitted) 2014 | 0 (omitted) 2015 | 0 (omitted) 2016 | 0 (omitted) 2017 | 0 (omitted) 2018 | 0 (omitted) 2019 | 0 (omitted) 2020 | 0 (omitted) 2021 | 0 (omitted) 2022 | 0 (omitted) | _cons | .3442386 .0088063 39.09 0.000 .326922 .3615551 ------------------------------------------------------------------------------ .
Mahtab
Comment