Hi,
For data:
I have poisson results:
I am wondering if this is a good model for my data. Can it be ascertained from the Pearson test? If yes, how do I interpret the results?
For data:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float count_selectoptionsh byte treatment long businessincome_num float(ff_dummy albvisit_dummy) long takerisk_num byte(educ ownership) 1 2 . 0 0 7 5 3 0 1 5 0 0 4 6 1 5 2 5 0 0 7 6 2 0 1 6 0 0 . . . 3 1 0 0 1 7 7 1 4 3 1 0 0 6 7 1 2 3 1 0 0 4 4 3 5 2 3 0 1 6 5 1 1 3 1 0 0 6 6 2 1 2 1 0 1 7 3 4 2 1 . . 0 6 . 1 0 1 2 1 1 3 2 2 1 2 1 0 0 7 3 1 4 3 1 0 1 5 4 4 0 1 1 0 1 5 . 1 4 2 2 0 0 2 6 4 1 1 1 0 1 6 6 1 0 1 1 0 0 4 4 2 4 2 2 0 0 7 6 1 3 1 6 0 0 9 5 3 2 1 2 0 0 6 3 1 0 1 1 0 1 5 2 1 1 2 1 0 0 4 . 1 2 3 1 0 0 7 6 1 0 1 6 0 0 5 6 3 1 2 1 0 1 7 7 2 3 1 2 0 1 7 5 1 2 1 . 0 1 8 3 1 1 2 6 0 1 5 . 3 0 1 . 0 1 5 6 2 1 1 . 0 0 6 6 1 2 1 . 0 1 7 6 1 3 1 . 0 0 5 3 2 1 2 . 0 1 5 4 4 2 3 6 0 0 7 3 3 2 1 1 0 1 5 6 1 2 3 . . 0 5 5 1 1 1 6 1 1 8 6 1 5 1 0 1 1 5 7 4 3 3 1 0 0 9 5 1 3 2 6 0 0 8 6 2 4 3 6 0 1 7 6 2 7 1 6 0 0 5 6 2 2 1 2 0 0 5 5 3 0 1 1 0 1 6 5 2 2 1 5 0 1 9 6 2 4 2 6 0 1 10 5 1 3 1 6 0 1 7 6 2 4 2 1 0 1 7 4 4 0 3 1 0 1 1 . 1 2 2 3 0 0 9 5 3 1 1 2 0 1 8 4 4 1 3 3 0 0 3 6 1 0 1 1 . 1 5 . 4 1 3 . 0 0 6 7 3 0 2 6 0 1 10 3 3 4 2 6 0 0 7 6 1 3 2 1 0 1 8 5 2 3 3 6 0 1 6 5 3 2 2 2 0 1 8 5 2 2 3 3 0 0 5 7 1 1 3 6 0 0 8 3 3 1 1 1 0 0 5 7 2 5 3 1 1 1 3 7 2 7 2 . 0 1 10 7 3 1 2 1 0 0 5 3 1 2 2 1 0 1 7 3 2 1 3 1 0 1 7 . 1 2 2 6 0 1 6 7 3 2 1 3 0 0 5 5 1 4 2 . 0 1 9 5 4 2 2 2 0 0 7 6 2 2 1 . 0 1 3 4 1 2 2 . 0 0 5 6 1 3 1 5 0 1 4 5 4 0 2 6 0 0 7 6 1 1 3 6 0 0 5 5 3 1 1 . 0 0 7 6 1 1 3 1 0 0 4 . 4 4 2 3 0 0 8 6 1 2 3 1 0 0 5 4 1 1 1 . 0 0 5 1 3 1 1 . 1 1 6 6 1 3 3 3 0 0 7 4 4 1 3 . . 0 6 . 1 4 2 0 0 1 5 4 2 2 2 5 0 0 6 7 2 3 3 6 0 0 7 6 2 0 3 . 0 1 9 5 1 0 1 6 0 0 8 7 3 1 1 6 0 1 4 4 2 1 3 6 . 0 6 4 3 1 3 2 0 0 7 6 2 2 2 1 0 0 7 5 2 2 3 . 1 1 8 5 2 4 1 6 1 0 7 6 2 7 2 . 0 1 6 7 2 5 3 6 0 0 6 7 2 1 3 . 0 0 6 7 1 2 3 6 0 0 7 3 4 end label values treatment treatment label def treatment 1 "Control", modify label def treatment 2 "Video", modify label def treatment 3 "Video + Nudge", modify label values businessincome_num junk label values takerisk_num junk label values educ educ label def educ 1 "Completed Primary", modify label def educ 2 "Some Secondary", modify label def educ 3 "Completed Secondary School", modify label def educ 4 "Vocational or Similar", modify label def educ 5 "Some University but no degree", modify label def educ 6 "University Bachelors Degree", modify label def educ 7 "Graduate or professional degree (MA, MS, MBA, PhD, JD, MD, DDS)", modify label values ownership ownership label def ownership 1 "Fully owned", modify label def ownership 2 "Mostly owned, some tenanted", modify label def ownership 3 "Some tenanted, mostly owned", modify label def ownership 4 "Fully tenanted", modify
I have poisson results:
Code:
poisson count_selectoptionsh b1.treatment businessincome_num ff_dummy albvisit_dummy takerisk_num educ ow > nership, vce (robust) Iteration 0: Log pseudolikelihood = -621.2712 Iteration 1: Log pseudolikelihood = -621.27114 Poisson regression Number of obs = 391 Wald chi2(8) = 47.41 Prob > chi2 = 0.0000 Log pseudolikelihood = -621.27114 Pseudo R2 = 0.0321 -------------------------------------------------------------------------------------- | Robust count_selectoptionsh | Coefficient std. err. z P>|z| [95% conf. interval] ---------------------+---------------------------------------------------------------- treatment | Video | .2279497 .0905258 2.52 0.012 .0505223 .4053771 Video + Nudge | .0889809 .0896911 0.99 0.321 -.0868103 .2647721 | businessincome_num | .0523736 .0173785 3.01 0.003 .0183124 .0864347 ff_dummy | .277089 .1379644 2.01 0.045 .0066837 .5474942 albvisit_dummy | .1570745 .0706869 2.22 0.026 .0185306 .2956183 takerisk_num | .0191169 .0223749 0.85 0.393 -.0247372 .0629709 educ | .0796836 .0292534 2.72 0.006 .022348 .1370191 ownership | .0291635 .0363037 0.80 0.422 -.0419904 .1003174 _cons | -.3456968 .2298975 -1.50 0.133 -.7962877 .104894 -------------------------------------------------------------------------------------- . estat gof Deviance goodness-of-fit = 377.4179 Prob > chi2(382) = 0.5566 Pearson goodness-of-fit = 350.1423 Prob > chi2(382) = 0.8774 .
Comment