Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • etregress vs eteffects

    Dear All,

    Consider estimation of ATE and ATET in an endogenous treatment regression with continuous response variable. Could someone help me to understand the difference between eteffects and etregress with the poutcomes cfunction options?

    The etregress model is fitted as:

    . webuse drugexp
    . etregress lndrug chron age lninc, treat(ins=age married lninc work) poutcomes cfunction

    Iteration 0: GMM criterion Q(b) = 2.279e-15
    Iteration 1: GMM criterion Q(b) = 6.041e-30

    Linear regression with endogenous treatment Number of obs = 6,000
    Estimator: Control function
    ------------------------------------------------------------------------------
    | Robust
    | Coefficient std. err. z P>|z| [95% conf. interval]
    -------------+----------------------------------------------------------------
    lndrug |
    chron | .4671725 .0319731 14.61 0.000 .4045064 .5298387
    age | .1021359 .00292 34.98 0.000 .0964128 .1078589
    lninc | .0550672 .0225036 2.45 0.014 .0109609 .0991735
    1.ins | -.8598836 .3483648 -2.47 0.014 -1.542666 -.1771011
    _cons | 1.665539 .2527527 6.59 0.000 1.170153 2.160925
    -------------+----------------------------------------------------------------
    ins |
    age | .021142 .0022961 9.21 0.000 .0166416 .0256424
    married | .084631 .0359713 2.35 0.019 .0141286 .1551334
    lninc | .1023032 .0225009 4.55 0.000 .0582022 .1464041
    work | .288418 .0372281 7.75 0.000 .2154522 .3613837
    _cons | -.622993 .108795 -5.73 0.000 -.8362273 -.4097587
    -------------+----------------------------------------------------------------
    /athrho0 | .4035094 .1724539 2.34 0.019 .0655059 .7415129
    /lnsigma0 | .3159269 .0500476 6.31 0.000 .2178353 .4140184
    /athrho1 | .7929459 .2986601 2.66 0.008 .2075829 1.378309
    /lnsigma1 | .1865347 .0613124 3.04 0.002 .0663646 .3067048
    -------------+----------------------------------------------------------------
    rho0 | .3829477 .1471637 .0654124 .6300583
    sigma0 | 1.37153 .0686418 1.243382 1.512885
    lambda0 | .5252243 .226367 .0815532 .9688954
    rho1 | .6600746 .1685343 .2046518 .880572
    sigma1 | 1.205066 .0738855 1.068616 1.35894
    lambda1 | .7954338 .2513036 .3028878 1.28798
    ------------------------------------------------------------------------------
    Wald test of indep. (rho0 = rho1 = 0): chi2(2) = 8.88 Prob > chi2 = 0.0118

    . margins r.ins, vce(unconditional)

    Contrasts of predictive margins Number of obs = 6,000

    Expression: Linear prediction, predict()

    ------------------------------------------------
    | df chi2 P>chi2
    -------------+----------------------------------
    ins | 1 6.09 0.0136
    ------------------------------------------------

    --------------------------------------------------------------
    | Unconditional
    | Contrast std. err. [95% conf. interval]
    -------------+------------------------------------------------
    ins |
    (1 vs 0) | -.8598836 .3483939 -1.542723 -.1770442
    --------------------------------------------------------------

    . margins, vce(unconditional) predict(cte) subpop(if ins==1)

    Predictive margins Number of obs = 6,000
    Subpop. no. obs = 4,556

    Expression: Conditional treatment effect, predict(cte)

    ------------------------------------------------------------------------------
    | Unconditional
    | Margin std. err. z P>|z| [95% conf. interval]
    -------------+----------------------------------------------------------------
    _cons | -.7522552 .3826993 -1.97 0.049 -1.502332 -.0021783
    ------------------------------------------------------------------------------


    And the eteffects model is fit as follows:


    . eteffects (lndrug chron age lninc) (ins age married lninc work)

    Iteration 0: EE criterion = 2.481e-18
    Iteration 1: EE criterion = 2.146e-31

    Endogenous treatment-effects estimation Number of obs = 6,000
    Outcome model: linear
    Treatment model: probit
    ------------------------------------------------------------------------------
    | Robust
    lndrug | Coefficient std. err. z P>|z| [95% conf. interval]
    -------------+----------------------------------------------------------------
    ATE |
    ins |
    (1 vs 0) | -.9089342 .5579228 -1.63 0.103 -2.002443 .1845745
    -------------+----------------------------------------------------------------
    POmean |
    ins |
    0 | 6.212021 .5431801 11.44 0.000 5.147408 7.276635
    ------------------------------------------------------------------------------


    . eteffects (lndrug chron age lninc) (ins age married lninc work), atet

    Iteration 0: EE criterion = 2.481e-18
    Iteration 1: EE criterion = 4.145e-31

    Endogenous treatment-effects estimation Number of obs = 6,000
    Outcome model: linear
    Treatment model: probit
    ------------------------------------------------------------------------------
    | Robust
    lndrug | Coefficient std. err. z P>|z| [95% conf. interval]
    -------------+----------------------------------------------------------------
    ATET |
    ins |
    (1 vs 0) | -.8529128 .7140559 -1.19 0.232 -2.252437 .546611
    -------------+----------------------------------------------------------------
    POmean |
    ins |
    0 | 6.503372 .7138809 9.11 0.000 5.104192 7.902553
    ------------------------------------------------------------------------------


    Notice that point estimates for ATE and ATET and the SEs are not quite the same across commands. Can you help me to understand why it are different?
Working...
X