Hi,
I am currently testing endogeneity for my regression of ESGt-1 towards COE . I have tried running both xtabond2 and xtdpdgmm. It only works if my code is as attached.
1. Can someone explain to me if my code is correct/make sense? Also what are some of the papers that I can read to understand better?
2. My AR2 is significant and only is insignificant at AR3, why is that?
xtdpdgmm coe18 L.coe18 L.ESGScore L.log_TA2_w L.btm2_w L.lev_ta_w L.ROA_w L.capex_ta_w L.div_ta2_w, gmm(L.
> coe18 L.ESGScore, lag(2 4)) twostep vce(r)
Generalized method of moments estimation
Fitting full model:
Step 1 f(b) = .00012871
Step 2 f(b) = .82908424
Group variable: firm_id Number of obs = 352
Time variable: year Number of groups = 46
Moment conditions: linear = 58 Obs per group: min = 1
nonlinear = 0 avg = 7.652174
total = 58 max = 12
(Std. err. adjusted for 46 clusters in firm_id)
------------------------------------------------------------------------------
| WC-Robust
coe18 | Coefficient std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
coe18 |
L1. | .9075901 .0510667 17.77 0.000 .8075012 1.007679
|
ESGScore |
L1. | -.0001207 .0000486 -2.49 0.013 -.0002159 -.0000255
|
log_TA2_w |
L1. | .0002031 .0009916 0.20 0.838 -.0017403 .0021465
|
btm2_w |
L1. | .0071664 .0032929 2.18 0.030 .0007125 .0136203
|
lev_ta_w |
L1. | -.0124381 .0098277 -1.27 0.206 -.0316999 .0068238
|
ROA_w |
L1. | .0245419 .0228735 1.07 0.283 -.0202894 .0693733
|
capex_ta_w |
L1. | .1038046 .0267035 3.89 0.000 .0514667 .1561426
|
div_ta2_w |
L1. | .0749887 .1024789 0.73 0.464 -.1258663 .2758437
|
_cons | -.0069952 .0231876 -0.30 0.763 -.052442 .0384516
------------------------------------------------------------------------------
Instruments corresponding to the linear moment conditions:
1, model(level):
2012:L2.L.coe18 2013:L2.L.coe18 2014:L2.L.coe18 2015:L2.L.coe18
2016:L2.L.coe18 2017:L2.L.coe18 2018:L2.L.coe18 2019:L2.L.coe18
2020:L2.L.coe18 2021:L2.L.coe18 2013:L3.L.coe18 2014:L3.L.coe18
2015:L3.L.coe18 2016:L3.L.coe18 2017:L3.L.coe18 2018:L3.L.coe18
2019:L3.L.coe18 2020:L3.L.coe18 2021:L3.L.coe18 2014:L4.L.coe18
2015:L4.L.coe18 2016:L4.L.coe18 2017:L4.L.coe18 2018:L4.L.coe18
2019:L4.L.coe18 2020:L4.L.coe18 2021:L4.L.coe18 2011:L2.L.ESGScore
2012:L2.L.ESGScore 2013:L2.L.ESGScore 2014:L2.L.ESGScore 2015:L2.L.ESGScore
2016:L2.L.ESGScore 2017:L2.L.ESGScore 2018:L2.L.ESGScore 2019:L2.L.ESGScore
2020:L2.L.ESGScore 2021:L2.L.ESGScore 2012:L3.L.ESGScore 2013:L3.L.ESGScore
2014:L3.L.ESGScore 2015:L3.L.ESGScore 2016:L3.L.ESGScore 2017:L3.L.ESGScore
2018:L3.L.ESGScore 2019:L3.L.ESGScore 2020:L3.L.ESGScore 2021:L3.L.ESGScore
2013:L4.L.ESGScore 2014:L4.L.ESGScore 2015:L4.L.ESGScore 2016:L4.L.ESGScore
2017:L4.L.ESGScore 2018:L4.L.ESGScore 2019:L4.L.ESGScore 2020:L4.L.ESGScore
2021:L4.L.ESGScore
2, model(level):
_cons
. estat overid
Sargan-Hansen test of the overidentifying restrictions
H0: overidentifying restrictions are valid
2-step moment functions, 2-step weighting matrix chi2(49) = 38.1379
Prob > chi2 = 0.8691
2-step moment functions, 3-step weighting matrix chi2(49) = 42.3927
Prob > chi2 = 0.7363
. estat serial, ar(1,2,3)
Arellano-Bond test for autocorrelation of the first-differenced residuals
H0: no autocorrelation of order 1 z = -2.6019 Prob > |z| = 0.0093
H0: no autocorrelation of order 2 z = -3.9205 Prob > |z| = 0.0001
H0: no autocorrelation of order 3 z = 0.9087 Prob > |z| = 0.3635
Thank you for anyone who can help me
I am currently testing endogeneity for my regression of ESGt-1 towards COE . I have tried running both xtabond2 and xtdpdgmm. It only works if my code is as attached.
1. Can someone explain to me if my code is correct/make sense? Also what are some of the papers that I can read to understand better?
2. My AR2 is significant and only is insignificant at AR3, why is that?
xtdpdgmm coe18 L.coe18 L.ESGScore L.log_TA2_w L.btm2_w L.lev_ta_w L.ROA_w L.capex_ta_w L.div_ta2_w, gmm(L.
> coe18 L.ESGScore, lag(2 4)) twostep vce(r)
Generalized method of moments estimation
Fitting full model:
Step 1 f(b) = .00012871
Step 2 f(b) = .82908424
Group variable: firm_id Number of obs = 352
Time variable: year Number of groups = 46
Moment conditions: linear = 58 Obs per group: min = 1
nonlinear = 0 avg = 7.652174
total = 58 max = 12
(Std. err. adjusted for 46 clusters in firm_id)
------------------------------------------------------------------------------
| WC-Robust
coe18 | Coefficient std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
coe18 |
L1. | .9075901 .0510667 17.77 0.000 .8075012 1.007679
|
ESGScore |
L1. | -.0001207 .0000486 -2.49 0.013 -.0002159 -.0000255
|
log_TA2_w |
L1. | .0002031 .0009916 0.20 0.838 -.0017403 .0021465
|
btm2_w |
L1. | .0071664 .0032929 2.18 0.030 .0007125 .0136203
|
lev_ta_w |
L1. | -.0124381 .0098277 -1.27 0.206 -.0316999 .0068238
|
ROA_w |
L1. | .0245419 .0228735 1.07 0.283 -.0202894 .0693733
|
capex_ta_w |
L1. | .1038046 .0267035 3.89 0.000 .0514667 .1561426
|
div_ta2_w |
L1. | .0749887 .1024789 0.73 0.464 -.1258663 .2758437
|
_cons | -.0069952 .0231876 -0.30 0.763 -.052442 .0384516
------------------------------------------------------------------------------
Instruments corresponding to the linear moment conditions:
1, model(level):
2012:L2.L.coe18 2013:L2.L.coe18 2014:L2.L.coe18 2015:L2.L.coe18
2016:L2.L.coe18 2017:L2.L.coe18 2018:L2.L.coe18 2019:L2.L.coe18
2020:L2.L.coe18 2021:L2.L.coe18 2013:L3.L.coe18 2014:L3.L.coe18
2015:L3.L.coe18 2016:L3.L.coe18 2017:L3.L.coe18 2018:L3.L.coe18
2019:L3.L.coe18 2020:L3.L.coe18 2021:L3.L.coe18 2014:L4.L.coe18
2015:L4.L.coe18 2016:L4.L.coe18 2017:L4.L.coe18 2018:L4.L.coe18
2019:L4.L.coe18 2020:L4.L.coe18 2021:L4.L.coe18 2011:L2.L.ESGScore
2012:L2.L.ESGScore 2013:L2.L.ESGScore 2014:L2.L.ESGScore 2015:L2.L.ESGScore
2016:L2.L.ESGScore 2017:L2.L.ESGScore 2018:L2.L.ESGScore 2019:L2.L.ESGScore
2020:L2.L.ESGScore 2021:L2.L.ESGScore 2012:L3.L.ESGScore 2013:L3.L.ESGScore
2014:L3.L.ESGScore 2015:L3.L.ESGScore 2016:L3.L.ESGScore 2017:L3.L.ESGScore
2018:L3.L.ESGScore 2019:L3.L.ESGScore 2020:L3.L.ESGScore 2021:L3.L.ESGScore
2013:L4.L.ESGScore 2014:L4.L.ESGScore 2015:L4.L.ESGScore 2016:L4.L.ESGScore
2017:L4.L.ESGScore 2018:L4.L.ESGScore 2019:L4.L.ESGScore 2020:L4.L.ESGScore
2021:L4.L.ESGScore
2, model(level):
_cons
. estat overid
Sargan-Hansen test of the overidentifying restrictions
H0: overidentifying restrictions are valid
2-step moment functions, 2-step weighting matrix chi2(49) = 38.1379
Prob > chi2 = 0.8691
2-step moment functions, 3-step weighting matrix chi2(49) = 42.3927
Prob > chi2 = 0.7363
. estat serial, ar(1,2,3)
Arellano-Bond test for autocorrelation of the first-differenced residuals
H0: no autocorrelation of order 1 z = -2.6019 Prob > |z| = 0.0093
H0: no autocorrelation of order 2 z = -3.9205 Prob > |z| = 0.0001
H0: no autocorrelation of order 3 z = 0.9087 Prob > |z| = 0.3635
Thank you for anyone who can help me
Comment