Using This dataset
. dataex
----------------------- copy starting from the next line -----------------------
I just want to ask whether this is the correct method for making a food insecurity index?
Thank You for Your Assistance
. dataex
----------------------- copy starting from the next line -----------------------
Code:
* Example generated by -dataex-. For more info, type help dataex clear input long hhcode byte(province region) long psu int district byte(c01 c02 c03 c04 c05 c06 c07 c08) 101100101 1 1 1011001 101 2 2 2 2 2 2 2 2 101100102 1 1 1011001 101 2 2 2 2 2 2 2 2 101100103 1 1 1011001 101 2 2 2 2 2 2 2 2 101100104 1 1 1011001 101 1 1 2 2 2 2 2 2 101100105 1 1 1011001 101 1 1 1 2 1 2 2 2 101100106 1 1 1011001 101 2 1 1 2 1 2 2 2 101100107 1 1 1011001 101 2 2 2 2 2 2 2 2 101100108 1 1 1011001 101 2 1 2 2 2 2 2 2 101100109 1 1 1011001 101 2 2 2 2 2 2 2 2 101100110 1 1 1011001 101 2 2 2 2 2 2 2 2 101100111 1 1 1011001 101 2 2 2 2 2 2 2 2 101100112 1 1 1011001 101 2 1 2 2 2 2 2 2 101100113 1 1 1011001 101 1 1 1 2 1 2 2 2 101100114 1 1 1011001 101 1 1 1 2 1 1 2 2 101100115 1 1 1011001 101 2 2 2 2 1 2 2 2 101100116 1 1 1011001 101 1 1 1 2 2 2 1 1 101100117 1 1 1011001 101 2 2 2 2 2 2 2 2 101100118 1 1 1011001 101 1 1 1 2 2 2 2 2 101100119 1 1 1011001 101 1 2 1 2 2 1 2 2 101100120 1 1 1011001 101 1 1 2 2 2 2 2 2 101100121 1 1 1011001 101 2 2 2 2 2 2 2 2 101100122 1 1 1011001 101 1 1 2 2 2 2 2 2 101100123 1 1 1011001 101 2 2 2 2 2 2 2 2 101100124 1 1 1011001 101 1 2 1 2 2 2 2 2 101100125 1 1 1011001 101 2 2 2 2 2 2 2 2 101100126 1 1 1011001 101 1 1 1 2 2 2 2 2 101100127 1 1 1011001 101 2 2 2 2 2 2 2 2 101100128 1 1 1011001 101 1 1 1 2 2 2 2 2 101100129 1 1 1011001 101 2 2 2 2 2 2 2 2 101100130 1 1 1011001 101 1 2 2 2 2 2 2 2 101100201 1 1 1011002 101 2 2 2 2 2 2 2 2 101100202 1 1 1011002 101 2 2 2 2 2 2 2 2 101100203 1 1 1011002 101 2 2 2 2 2 2 2 2 101100204 1 1 1011002 101 2 2 2 2 2 2 2 2 101100205 1 1 1011002 101 2 2 2 2 2 2 2 2 101100206 1 1 1011002 101 1 1 1 2 1 2 2 2 101100207 1 1 1011002 101 2 2 2 2 2 2 2 2 101100208 1 1 1011002 101 2 2 2 2 2 2 2 2 101100209 1 1 1011002 101 2 2 2 2 2 2 2 2 101100210 1 1 1011002 101 2 1 1 2 2 2 2 2 101100211 1 1 1011002 101 2 2 2 2 2 2 2 2 101100212 1 1 1011002 101 2 2 2 2 2 2 2 2 101100213 1 1 1011002 101 2 2 2 2 2 2 2 2 101100214 1 1 1011002 101 2 2 2 2 2 2 2 2 101100215 1 1 1011002 101 2 2 2 2 2 2 2 2 101100217 1 1 1011002 101 2 2 2 2 2 2 2 2 101100218 1 1 1011002 101 1 1 1 2 2 2 1 1 101100219 1 1 1011002 101 2 2 1 2 2 2 2 2 101100220 1 1 1011002 101 2 2 2 2 2 2 2 2 101100221 1 1 1011002 101 2 2 2 2 2 2 2 2 101100222 1 1 1011002 101 2 2 1 2 2 2 2 2 101100223 1 1 1011002 101 2 2 1 2 2 2 2 2 101100224 1 1 1011002 101 2 2 2 2 2 2 2 2 101100225 1 1 1011002 101 2 2 2 2 2 2 2 2 101100226 1 1 1011002 101 2 2 1 2 2 2 2 2 101100227 1 1 1011002 101 2 2 2 2 2 2 2 2 101100228 1 1 1011002 101 2 2 1 2 2 2 2 2 101100229 1 1 1011002 101 2 2 2 2 2 2 2 2 101100230 1 1 1011002 101 1 1 1 2 2 2 2 2 101100401 1 1 1011004 101 2 2 2 2 2 2 2 2 101100402 1 1 1011004 101 2 2 2 2 2 2 2 2 101100403 1 1 1011004 101 2 2 2 2 2 2 2 2 101100404 1 1 1011004 101 2 2 2 2 2 2 2 2 101100405 1 1 1011004 101 2 2 2 2 2 2 2 2 101100406 1 1 1011004 101 2 2 2 2 2 2 2 2 101100407 1 1 1011004 101 2 2 2 2 2 2 2 2 101100408 1 1 1011004 101 2 2 2 2 2 2 2 2 101100409 1 1 1011004 101 1 1 2 2 2 2 2 2 101100410 1 1 1011004 101 2 2 2 2 2 2 2 2 101100412 1 1 1011004 101 2 2 2 2 2 2 2 2 101100413 1 1 1011004 101 1 2 1 2 2 2 2 2 101100414 1 1 1011004 101 2 2 2 2 2 2 2 2 101100415 1 1 1011004 101 2 2 2 2 2 2 2 2 101100416 1 1 1011004 101 2 2 2 2 2 2 2 2 101100417 1 1 1011004 101 2 2 2 2 2 2 2 2 101100418 1 1 1011004 101 2 2 2 2 2 2 2 2 101100420 1 1 1011004 101 2 2 2 2 2 2 2 2 101100421 1 1 1011004 101 2 2 2 2 2 2 2 2 101100422 1 1 1011004 101 2 2 1 2 2 2 2 2 101100423 1 1 1011004 101 2 2 2 2 2 2 2 2 101100424 1 1 1011004 101 2 2 2 2 2 2 2 2 101100425 1 1 1011004 101 2 2 2 2 2 2 2 2 101100426 1 1 1011004 101 1 1 1 2 2 2 2 2 101100427 1 1 1011004 101 2 2 2 2 2 2 2 2 101100428 1 1 1011004 101 2 2 2 2 2 2 2 2 101100429 1 1 1011004 101 2 2 2 2 2 2 2 2 101100430 1 1 1011004 101 2 2 2 2 2 2 2 2 101100501 1 1 1011005 101 2 2 2 2 2 2 2 2 101100502 1 1 1011005 101 2 2 2 2 2 2 2 2 101100503 1 1 1011005 101 2 2 2 2 2 2 2 2 101100504 1 1 1011005 101 2 2 2 2 2 2 2 2 101100505 1 1 1011005 101 1 1 1 2 1 2 2 2 101100506 1 1 1011005 101 1 1 1 2 1 2 2 2 101100507 1 1 1011005 101 1 1 1 2 2 2 2 2 101100508 1 1 1011005 101 2 2 2 2 2 2 2 2 101100509 1 1 1011005 101 1 1 1 2 2 2 2 2 101100510 1 1 1011005 101 2 2 2 2 2 2 2 2 101100511 1 1 1011005 101 2 2 1 2 2 2 2 2 101100512 1 1 1011005 101 2 2 1 2 2 2 2 2 101100513 1 1 1011005 101 2 2 1 2 2 2 2 2 end label values province province label def province 1 "kp", modify label values region region label def region 1 "rural", modify label values district district label def district 101 "abbottabad", modify keep if province==2 drop if c01 == 98 | c01 == 99 drop if c02 == 98 | c02 == 99 drop if c03 == 98 | c03 == 99 drop if c04 == 98 | c04 == 99 drop if c05 == 98 | c05 == 99 drop if c06 == 98 | c06 == 99 drop if c07 == 98 | c07 == 99 drop if c08 == 98 | c08 == 99 recode c01 (1=1 "1") (2=0 "0"), generate(binary_c01) recode c02 (1=1 "1") (2=0 "0"), generate(binary_c02) recode c03 (1=1 "1") (2=0 "0"), generate(binary_c03) recode c04 (1=1 "1") (2=0 "0"), generate(binary_c04) recode c05 (1=1 "1") (2=0 "0"), generate(binary_c05) recode c06 (1=1 "1") (2=0 "0"), generate(binary_c06) recode c07 (1=1 "1") (2=0 "0"), generate(binary_c07) recode c08 (1=1 "1") (2=0 "0"), generate(binary_c08) collapse (mean) binary_c01 binary_c02 binary_c03 binary_c04 binary_c05 binary_c06 binary_c07 binary_c08 , by(district) foreach var of varlist binary_c01 binary_c02 binary_c03 binary_c04 binary_c05 binary_c06 binary_c07 binary_c08 { egen min_`var' = min(`var') egen max_`var' = max(`var') gen normalized_`var' = (`var' - min_`var') / (max_`var' - min_`var') } list binary_c01 normalized_binary_c01 in 1/10 gen food_insecurity_index = (normalized_binary_c01 + normalized_binary_c02 + normalized_binary_c03 + normalized_binary_c04 + normalized_binary_c05 + normalized_binary_c06 + normalized_binary_c07 + normalized_binary_c08) / 8 list district food_insecurity_index ------------------ copy up to and including the previous line ------------------ Listed 100 out of 160654 observations Use the count() option to list more Result: district food_i~x 1. attock .0878222 2. bahawaln .7673687 3. bahawalp .6395296 4. bhakhar .384757 5. chakwal .2943359 6. chiniot .2689224 7. d. g. kh .5084416 8. faisalab .1328354 9. gujranwa .2444148 10. gujrat .0180971 11. hafizaba .2025424 12. islamaba .1586573 13. jehlum .4989371 14. jhang .5090191 15. kasur .7063363 16. khanewal .7514324 17. khushab .2625226 18. lahore .4137256 19. layyah .4822337 20. lodhran .6053461 21. mandi ba .1896518 22. mianwali .2228872 23. multan .3976084 24. muzaffar .6404075 25. nankana .2188804 26. narowal .3084604 27. okara .0613527 28. pakpatta .2036972 29. rahim ya .4872369 30. rajanpur .3854529 31. rawalpin .1842262 32. sahiwal .1838323 33. sargodha .3961037 34. sheikhup .3443179 35. sialkot .1976983 36. t.t. sin .2923453 37. vehari .3706231
Thank You for Your Assistance
Comment