Hi! I have a question about the predict command. I am a new learner, so i still have not discovered many things in STATA.
Can someone help me to understand about why is the predicted factor score become smaller? And please explain to me what is the use of the predicted factor? Please explain with the easiest sentence to understand, cause I am still new for this statistics thing and also English is not my first language.
Thank you!
Factor loadings (pattern matrix) and unique variances
---------------------------------------------------------------------
Variable | Factor1 Factor2 Factor3 Factor4 | Uniqueness
-------------+----------------------------------------+--------------
fpa1 | 0.6651 0.3448 0.1726 -0.0057 | 0.4089
fpa2 | 0.7986 0.2215 0.1759 -0.0166 | 0.2819
fpa3 | 0.8100 -0.3194 0.0794 -0.0279 | 0.2349
fpa4 | 0.6441 -0.0849 0.0289 0.1010 | 0.5669
fpa5 | 0.7898 0.1085 -0.2287 0.0299 | 0.3112
fpa6 | 0.7592 -0.3870 0.0186 -0.0235 | 0.2730
fpa7 | 0.7157 0.1610 -0.2399 -0.0437 | 0.4023
---------------------------------------------------------------------
. predict factor1
(regression scoring assumed)
Scoring coefficients (method = regression)
------------------------------------------------------
Variable | Factor1 Factor2 Factor3 Factor4
-------------+----------------------------------------
fpa1 | 0.12527 0.31788 0.23534 -0.00758
fpa2 | 0.22321 0.34658 0.35204 -0.03193
fpa3 | 0.23783 -0.43979 0.17486 -0.06685
fpa4 | 0.08829 -0.04999 0.03382 0.16791
fpa5 | 0.21522 0.15642 -0.43104 0.09318
fpa6 | 0.17666 -0.47381 0.00370 -0.04232
fpa7 | 0.13190 0.17013 -0.36147 -0.09852
------------------------------------------------------
Can someone help me to understand about why is the predicted factor score become smaller? And please explain to me what is the use of the predicted factor? Please explain with the easiest sentence to understand, cause I am still new for this statistics thing and also English is not my first language.
Thank you!
Factor loadings (pattern matrix) and unique variances
---------------------------------------------------------------------
Variable | Factor1 Factor2 Factor3 Factor4 | Uniqueness
-------------+----------------------------------------+--------------
fpa1 | 0.6651 0.3448 0.1726 -0.0057 | 0.4089
fpa2 | 0.7986 0.2215 0.1759 -0.0166 | 0.2819
fpa3 | 0.8100 -0.3194 0.0794 -0.0279 | 0.2349
fpa4 | 0.6441 -0.0849 0.0289 0.1010 | 0.5669
fpa5 | 0.7898 0.1085 -0.2287 0.0299 | 0.3112
fpa6 | 0.7592 -0.3870 0.0186 -0.0235 | 0.2730
fpa7 | 0.7157 0.1610 -0.2399 -0.0437 | 0.4023
---------------------------------------------------------------------
. predict factor1
(regression scoring assumed)
Scoring coefficients (method = regression)
------------------------------------------------------
Variable | Factor1 Factor2 Factor3 Factor4
-------------+----------------------------------------
fpa1 | 0.12527 0.31788 0.23534 -0.00758
fpa2 | 0.22321 0.34658 0.35204 -0.03193
fpa3 | 0.23783 -0.43979 0.17486 -0.06685
fpa4 | 0.08829 -0.04999 0.03382 0.16791
fpa5 | 0.21522 0.15642 -0.43104 0.09318
fpa6 | 0.17666 -0.47381 0.00370 -0.04232
fpa7 | 0.13190 0.17013 -0.36147 -0.09852
------------------------------------------------------
Comment