Refer to the Question "How to discern the coefficients and their p-values of covariates using sdid", I have the same issue when using the sdid in Stata, and I tried to following the what Prof. Daniel Daniel PV' method to obtain the coefficients and Standard Error of covariates. I am using "optimized" not "projected" for the type. I find out the result I obtained from these two different type is far different from each other. And is this because of the perfect multicolineality issue in which ultimately causing the coefficent from e(beta) not align with result from reghdfe
Here is my code and result:
Here is my code and result:
Code:
sdid l_wo state date treat, vce(bootstrap) method(sdid) covariates(l_pop l_black l_unemp l_inc l_HS l_college lgdp, optimized) seed(1234) Synthetic Difference-in-Differences Estimator ----------------------------------------------------------------------------- l_wo | ATT Std. Err. t P>|t| [95% Conf. Interval] -------------+--------------------------------------------------------------- treat | -0.03294 0.00791 -4.16 0.000 -0.04845 -0.01743 ----------------------------------------------------------------------------- 95% CIs and p-values are based on Large-Sample approximations. Refer to Arkhangelsky et al., (2020) for theoretical derivations.
Code:
mat list e(beta) e(beta)[8,1] c1 l_pop -.00045378 l_black -.0013566 l_unemp -.00082513 l_inc -.00287189 l_HS -.00229133 l_college .0056747 lgdp -.00051779 adoption 733
Code:
egen W = mean(treat), by(state) reghdfe l_wo l_pop l_black l_unemp l_inc l_HS l_college lgdp if W == 0 , abs(state date) cluster(state) (MWFE estimator converged in 2 iterations) HDFE Linear regression Number of obs = 2,256 Absorbing 2 HDFE groups F( 7, 46) = 1.34 Statistics robust to heteroskedasticity Prob > F = 0.2554 R-squared = 0.7907 Adj R-squared = 0.7810 Within R-sq. = 0.0458 Number of clusters (state) = 47 Root MSE = 0.0560 (Std. err. adjusted for 47 clusters in state) ------------------------------------------------------------------------------ | Robust l_wo | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- l_pop | -.23401 .8383909 -0.28 0.781 -1.921603 1.453583 l_black | -8.711286 5.632934 -1.55 0.129 -20.04979 2.627222 l_unemp | -.0444142 .0375408 -1.18 0.243 -.1199799 .0311515 l_inc | .1109817 .2650816 0.42 0.677 -.4225999 .6445633 l_HS | -.2006585 .314647 -0.64 0.527 -.83401 .4326931 l_college | .0534295 .1830538 0.29 0.772 -.3150387 .4218977 lgdp | -.3214158 .2657447 -1.21 0.233 -.8563321 .2135006 _cons | 8.264076 11.40091 0.72 0.472 -14.68476 31.21291 ------------------------------------------------------------------------------ Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| state | 47 47 0 *| date | 48 1 47 | -----------------------------------------------------+ * = FE nested within cluster; treated as redundant for DoF computation
Comment