Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • In Dif in Dif, what is a suitable group level?

    Hi all,

    I am studying the effect of a shock at the industry level on firms. Shock happens at diffrent times in different industries, so I use a staggered dif-in-dif. My main question is: what is a good treatment group in this setup? one industry or all industries hit by the shock at the same time?
    so this is my main specification:

    Yigt=a_g+a_t+beta*Dit+epsilon

    Yigt: firm i, group g, time t
    a_g: group FE
    a_t: year FE
    Dit: Treatment*Post
    (I am not controlling for covariants at this point)


    If I define my treatment groups as all industries hitting by the shock for the first time at the same time:
    Code:
    reg Y Dit i.shock i.fyear, vce(cluster cik)
    
    Linear regression                               Number of obs     =      2,002
                                                    F(12, 399)        =       2.31
                                                    Prob > F          =     0.0073
                                                    R-squared         =     0.0250
                                                    Root MSE          =     .30748
    
                                      (Std. err. adjusted for 400 clusters in cik)
    ------------------------------------------------------------------------------
                 |               Robust
    Y           | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             Dit |   .0481019   .0171934     2.80   0.005      .014301    .0819029
                 |
    If I define the treatment groups as all industries hitting by the shock for the first time at the same time and adding an industry FE:
    Code:
     reg Y Dit i.shock i.fyear i.sic, vce(cluster cik)
    
    Linear regression                               Number of obs     =      2,002
                                                    F(72, 399)        =          .
                                                    Prob > F          =          .
                                                    R-squared         =     0.6156
                                                    Root MSE          =     .20145
    
                                      (Std. err. adjusted for 400 clusters in cik)
    ------------------------------------------------------------------------------
                 |               Robust
    Y           | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             Dit |   .0273507   .0132821     2.06   0.040      .001239    .0534624
                 |
    If I define the treatment groups just as industries; so two industries hitting by the shock at the same time will be two different treatment groups:
    Code:
    reg Y Dit i.fyear i.sic, vce(cluster cik)
    
    Linear regression                               Number of obs     =      2,002
                                                    F(71, 399)        =          .
                                                    Prob > F          =          .
                                                    R-squared         =     0.6066
                                                    Root MSE          =     .20346
    
                                      (Std. err. adjusted for 400 clusters in cik)
    ------------------------------------------------------------------------------
                 |               Robust
               Y | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             Dit |   .0132233   .0156425     0.85   0.398    -.0175288    .0439753
    If I define my treatment groups as all industries hitting by the shock for the first time at the same time, but instead of a year FE include an industry*year FE, then:
    Code:
    reg Y Dit i.shock i.sic#i.fyear, vce(cluster cik)
    
    Linear regression                               Number of obs     =      2,002
                                                    F(136, 399)       =          .
                                                    Prob > F          =          .
                                                    R-squared         =     0.6510
                                                    Root MSE          =     .24646
    
                                      (Std. err. adjusted for 400 clusters in cik)
    ------------------------------------------------------------------------------
                 |               Robust
               Y | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             Dit |   .3175529    .177229     1.79   0.074    -.0308664    .6659722
    And if I define a treatment group as one industry and control for both year and year*industry FE:

    Code:
    reg Y Dit  i.sic##i.fyear, vce(cluster cik)
    
    Linear regression                               Number of obs     =      2,002
                                                    F(134, 399)       =          .
                                                    Prob > F          =          .
                                                    R-squared         =     0.6438
                                                    Root MSE          =     .24835
    
                                      (Std. err. adjusted for 400 clusters in cik)
    ------------------------------------------------------------------------------
                 |               Robust
             Y  | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             Dit |   .3050812    .248455     1.23   0.220    -.1833634    .7935257

    I am sure the last one has serious collinearity problems and I am just adding it here for reference. But I do not know what the best specification among others is.


    Thank you,
    Mahtab

  • #2
    This is the summary of all results above in one table:
    (1) (2) (3) (4) (5)
    VARIABLES Y Y Y Y Y
    Dit 0.05*** 0.03** 0.01 0.32* 0.31
    (0.02) (0.01) (0.02) (0.18) (0.25)
    Constant 0.68*** 0.63*** 0.63*** 0.68*** 0.68
    (0.02) (0.00) (0.00) (0.00) (.)
    Observations 2,002 2,002 2,002 2,002 2,002
    R-squared 0.02 0.62 0.61 0.65 0.64
    shock FE Y Y N Y N
    Year FE Y Y Y N Y
    Industry FE N Y Y N Y
    Year*Industry FE N N N Y Y
    Last edited by Mahtab Karimi; 14 Jul 2024, 20:35.

    Comment

    Working...
    X