Hi all,
I am running the following staggered dif in dif where the variable of interest is Dit(Treatment*Post), group is my group variable showing treatment(it is a group of firms not a single firm) and fyear is the time variable:
Then, I thought why not to try xtreg?! And then I ran the following model. My quesiton is, which specificaiton is more reliable/reasonable/correct to report? xtreg with fe is very similar to the reg results mentioned above and it ends up removing my group indicators due to the collinearity between the group effects and the fixed effect. But I do not know why/how to rule out the RE model.
Many Thanks,
Mahtab
I am running the following staggered dif in dif where the variable of interest is Dit(Treatment*Post), group is my group variable showing treatment(it is a group of firms not a single firm) and fyear is the time variable:
Code:
reg Ya Dit log_at q_w roa_w sales_growth_w fyear_stock_performace leverage_w financial_constraint ret_sd instblckown_ratio_w rdassets_w rdassets_change_indicator capxassets_w assetintangibility_w fortune_500 containsrisk uniquecommitteecount log_wage i.fyear i.group, vce(cluster cik) Linear regression Number of obs = 1,711 F(29, 329) = 9.30 Prob > F = 0.0000 R-squared = 0.2761 Root MSE = .26475 (Std. err. adjusted for 330 clusters in cik) ------------------------------------------------------------------------------------------- | Robust Ya | Coefficient std. err. t P>|t| [95% conf. interval] --------------------------+---------------------------------------------------------------- Dit | .0433924 .0200312 2.17 0.031 .0039869 .0827979 log_at | -.0033164 .0115973 -0.29 0.775 -.0261306 .0194977 q_w | -.0190526 .0224108 -0.85 0.396 -.0631393 .025034 roa_w | -.0384923 .2222948 -0.17 0.863 -.4757908 .3988061 sales_growth_w | .3146239 .0619365 5.08 0.000 .1927823 .4364655 fyear_stock_performace | .0235292 .0240789 0.98 0.329 -.0238389 .0708973 leverage_w | .000235 .0057096 0.04 0.967 -.0109969 .0114668 financial_constraint | .0213999 .0420888 0.51 0.611 -.0613973 .104197 ret_sd | 2.795826 1.329521 2.10 0.036 .1803918 5.411261 instblckown_ratio_w | .081117 .1175083 0.69 0.490 -.1500455 .3122794 rdassets_w | .2935391 .7718691 0.38 0.704 -1.224882 1.811961 rdassets_change_indicator | .2371774 .0450438 5.27 0.000 .1485672 .3257876 capxassets_w | -1.136542 .6557137 -1.73 0.084 -2.426463 .1533783 assetintangibility_w | -.1576374 .1026244 -1.54 0.125 -.3595203 .0442455 fortune_500 | -.0609666 .0450022 -1.35 0.176 -.149495 .0275617 containsrisk | .0820526 .0758179 1.08 0.280 -.0670964 .2312016 uniquecommitteecount | .0083096 .0109137 0.76 0.447 -.0131599 .0297792 log_wage | .0060976 .0378791 0.16 0.872 -.0684181 .0806134 ....
Code:
tsset cik fyear xtreg Ya Dit log_at q_w roa_w sales_growth_w fyear_stock_performace leverage_w financial_constraint ret_sd instblckown_ratio_w rdassets_w rdassets_change_indicator capxassets_w assetintangibility_w fortune_500 containsrisk uniquecommitteecount log_wage i.fyear i.group,re vce(cluster cik) Random-effects GLS regression Number of obs = 1,711 Group variable: cik Number of groups = 330 R-squared: Obs per group: Within = 0.0306 min = 1 Between = 0.2408 avg = 5.2 Overall = 0.2352 max = 6 Wald chi2(29) = 107.84 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. err. adjusted for 330 clusters in cik) ------------------------------------------------------------------------------------------- | Robust Ya | Coefficient std. err. z P>|z| [95% conf. interval] --------------------------+---------------------------------------------------------------- Dit | .032265 .0129934 2.48 0.013 .0067984 .0577316 log_at | -.0066793 .0084666 -0.79 0.430 -.0232736 .009915 q_w | .0030271 .0095897 0.32 0.752 -.0157684 .0218226 roa_w | .1366377 .0691293 1.98 0.048 .0011469 .2721286 sales_growth_w | .0533237 .0238901 2.23 0.026 .0064999 .1001475 fyear_stock_performace | .0028065 .008552 0.33 0.743 -.0139551 .019568 leverage_w | -.0010619 .0009059 -1.17 0.241 -.0028375 .0007136 financial_constraint | .0442714 .0192372 2.30 0.021 .0065672 .0819756 ret_sd | -.3657277 .414918 -0.88 0.378 -1.178952 .4474966 instblckown_ratio_w | .0111513 .0606325 0.18 0.854 -.1076862 .1299888 rdassets_w | 1.042973 .5368405 1.94 0.052 -.0092152 2.095161 rdassets_change_indicator | .2472112 .0536758 4.61 0.000 .1420087 .3524138 capxassets_w | -.2267981 .2185544 -1.04 0.299 -.6551568 .2015607 assetintangibility_w | -.0415342 .0551871 -0.75 0.452 -.1496989 .0666306 fortune_500 | -.0346659 .0192657 -1.80 0.072 -.0724259 .0030942 containsrisk | .004988 .0195374 0.26 0.798 -.0333045 .0432806 uniquecommitteecount | .0081462 .0045533 1.79 0.074 -.0007781 .0170705 log_wage | .0129669 .0281526 0.46 0.645 -.0422111 .068145 | ... | _cons | .3344413 .2971543 1.13 0.260 -.2479703 .916853 --------------------------+---------------------------------------------------------------- sigma_u | .24998514 sigma_e | .0814166 rho | .90410091 (fraction of variance due to u_i) -------------------------------------------------------------------------------------------
Mahtab
Comment