Dear Statalist
I am using did_multiplegt_dyn downloaded from the SSC (for estimating heterogeniety-robust DID; de Chaisemartin & D'Haultfoeuille, 2024, Difference-in-Differences Estimators of Intertemporal Treatment Effects) on Stata version 16.
I am nominally working with a larger dataset (15 variables, 1.2*10^6 observations), but in practice I am using a smaller subsample for simplicity as I prepare my code. My data is longitudinal and unbalanced, for example:
I am running a loop with did_multiplegt_dyn as follows (note, I am also using event_plot from the SSC to graph the results):
As the loop runs the above did_multiplegt_dyn command I get the following output and corresponding error:
I have not defined a variable called didmgt_Var_all_XX prior to running the loop - I suspect it is an output from did_multiplegt_dyn (though I cannot find it in the program's documentation). I have tried to find references to the specified error elsewhere but I cannot find any reference to this problem nor on how to solve it.
I would greatly appreciate some help.
Many thanks,
Guy
I am using did_multiplegt_dyn downloaded from the SSC (for estimating heterogeniety-robust DID; de Chaisemartin & D'Haultfoeuille, 2024, Difference-in-Differences Estimators of Intertemporal Treatment Effects) on Stata version 16.
I am nominally working with a larger dataset (15 variables, 1.2*10^6 observations), but in practice I am using a smaller subsample for simplicity as I prepare my code. My data is longitudinal and unbalanced, for example:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input double(var_1 var_2 var_3 ID) long YEAR byte(treated_1 cluster) 3850 285298.29921 202507 2370023009 2004 0 5 4050 294390.08914 195963 2370023009 2005 0 5 4000 505421.49687 404552 2370023009 2006 0 5 3751 378618.47563 266869 2370023009 2007 0 5 3645 425285.02748 289306 2370023009 2008 1 5 3805 471000.74992 304888 2370023009 2009 1 5 3283 570662.32445 405157 2370023009 2010 1 5 4032 590190.63912 298629 2370023009 2011 1 5 4314 724288.21162 408188 2370023009 2012 1 5 4510 764617.21335 437068 2370023009 2013 1 5 4510 839516.98757 475772 2370023009 2014 1 5 4930 880242.63312 464767.08 2370023009 2015 1 5 5442 719169.59029 406694.16 2370023009 2016 1 5 6280 849119.11759 473080.37 2370023009 2017 1 5 6567 111020.71734 27604 2370027009 2004 0 5 6661 128064.03995 42766 2370027009 2005 0 5 6754 140641.49231 66726 2370027009 2006 0 5 5563 134937.5374 55661 2370027009 2007 0 5 5814 133244.049 46556 2370027009 2008 0 5 5581 120180.65224 48602 2370027009 2009 0 5 5225 176240.74104 80450 2370027009 2010 0 5 5129 160180.52531 51499 2370027009 2011 0 5 5145 164450.5776 75849 2370027009 2012 0 5 5174 180331.39929 61031 2370027009 2013 0 5 5175 159211.5154 50907 2370027009 2014 0 5 5135 158655.13822 63240 2370027009 2015 0 5 5135 132289.24417 66011.71 2370027009 2016 0 5 5135 153429.84534 39369.13 2370027009 2017 0 5 5135 187312.69027 57855.03 2370027009 2018 0 5 end
Code:
local vars "var_1 var_2 var_3" forvalues k = 1(1)2 { foreach v of local vars { did_multiplegt_dyn `v' ID YEAR treated_`k', effects(12) placebo(12) cluster(cluster) only_never_switchers ci_level(99) event_plot e(estimates)#e(variances), default_look graph_opt(xtitle("Years relative to switch") ytitle("Average effect of switching") xlabel(-12(-1)12) title(`"dCDH `v' `k'"')) stub_lag(Effect_#) stub_lead(Placebo_#) together graph save, replace matrix dcdh_b_`v'_`k' = e(estimates) matrix dcdh_v_`v'_`k' = e(variances) } }
Code:
The number of placebos which can be estimated is at most 7. The command will therefore try to estimate 7 placebo(s). Effect_11 cannot be estimated. There is no switcher or no control for this effect. Effect_12 cannot be estimated. There is no switcher or no control for this effect. Placebo_7 cannot be estimated. There is no switcher or no control for this placebo. Some placebos/effects could not be estimated. Therefore, the command will not be compatible with the honestdid command. Some placebos could not be estimated. Therefore, the test of joint nullity of the placebos could not be computed. -------------------------------------------------------------------------------- Estimation of treatment effects: Event-study effects -------------------------------------------------------------------------------- | Estimate SE LB CI UB CI N Switchers -------------+------------------------------------------------------------------ Effect_1 | -55.4194 26.01407 -122.4272 11.5884 9478 16 Effect_2 | -19.33951 63.40962 -182.6719 143.9928 8673 16 Effect_3 | 313.8926 73.26235 125.1813 502.6039 6848 12 Effect_4 | 418.1752 69.77149 238.4557 597.8946 5622 11 Effect_5 | 328.411 30.65127 249.4586 407.3634 3844 5 Effect_6 | 645.4331 37.15429 549.73 741.1362 2933 4 Effect_7 | 1181.55 49.06057 1055.178 1307.922 2565 4 Effect_8 | 926.4066 53.48948 788.6268 1064.186 1906 3 Effect_9 | 1111.936 54.67205 971.1099 1252.762 1687 3 Effect_10 | 2894.371 52.96381 2757.945 3030.797 551 1 Effect_11 | . . . . 0 0 Effect_12 | . . . . 0 0 -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- Average cumulative (total) effect per treatment unit -------------------------------------------------------------------------------- | Estimate SE LB CI UB CI N Switch x Periods -------------+----------------------------------------------------------------------------- Av_tot_eff | 353.9419 24.02224 292.0647 415.8191 11775 75 -------------------------------------------------------------------------------- Average number of time periods over which a treatment's effect is accumulated = 4.6619718 -------------------------------------------------------------------------------- Testing the parallel trends and no anticipation assumptions -------------------------------------------------------------------------------- | Estimate SE LB CI UB CI N Switchers -------------+------------------------------------------------------------------ Placebo_1 | -3.288138 42.84637 -113.6531 107.0768 8610 16 Placebo_2 | 352.3659 165.6031 -74.19952 778.9313 7527 16 Placebo_3 | 444.1805 215.8812 -111.8926 1000.254 4912 11 Placebo_4 | 361.0978 394.4885 -655.0373 1377.233 2496 7 Placebo_5 | -115.2562 40.31975 -219.113 -11.3994 1130 2 Placebo_6 | 3679.696 42.39853 3570.484 3788.907 484 1 Placebo_7 | . . . . 0 0 -------------------------------------------------------------------------------- didmgt_Var_all_XX not found r(111);
I would greatly appreciate some help.
Many thanks,
Guy
Comment