Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • != 0 predicts failure perfectly;

    Hi

    im using simple probit model

    where my independent variablecsopresence1 is dummy , my dependent variable hard_final_Exact_new is dummy and Moderator is dummy , which is calculated as Modriatr = csopresence1 * post_SFAS158 * PENADJ_indicator
    and i have some control variable that is dummy post_SFAS158 PENADJ_indicator

    the regression give me

    note: Modriatr != 0 predicts failure perfectly;
    Modriatr omitted and 8 obs not used.

    this is my model
    probit hard_final_Exact_new csopresence1 Modriatr post_SFAS158 PENADJ_indicator Firm_Size_w ROA_w Leverage_w Market_book_four_w Non_pension_CFO_w STD_CFO_w Board_Independence_w BoardSize_w Gender_Diversity_w Fund_Status_w FUNDING_RATIO_w Platn_Size_w CSR_Committee SustainabilityScore_w i.year i.ff_12 , robust cluster (id)

    is there a way to solve this problem

    HTML Code:
    probit   hard_final_Exact_new  csopresence1 Modriatr  post_SFAS158  PENADJ_indicator Firm_Size_w   ROA_w     Leverage_w   Market_book_four_w   Non_pension_CFO_w   STD_CFO_w  Board_Independe
    > nce_w BoardSize_w Gender_Diversity_w  Fund_Status_w  FUNDING_RATIO_w  Platn_Size_w     CSR_Committee  SustainabilityScore_w   i.year    i.ff_12 ,  robust cluster (id)
    
    note: Modriatr != 0 predicts failure perfectly;
          Modriatr omitted and 8 obs not used.
    
    note: 2005.year != 0 predicts failure perfectly;
          2005.year omitted and 165 obs not used.
    
    note: 2006.year != 0 predicts failure perfectly;
          2006.year omitted and 13 obs not used.
    
    Iteration 0:  Log pseudolikelihood = -358.35145  
    Iteration 1:  Log pseudolikelihood = -329.04261  
    Iteration 2:  Log pseudolikelihood = -326.56546  
    Iteration 3:  Log pseudolikelihood = -326.52647  
    Iteration 4:  Log pseudolikelihood = -326.52635  
    Iteration 5:  Log pseudolikelihood = -326.52635  
    
    Probit regression                                       Number of obs =  3,159
                                                            Wald chi2(44) =  84.81
                                                            Prob > chi2   = 0.0002
    Log pseudolikelihood = -326.52635                       Pseudo R2     = 0.0888
    
                                                (Std. err. adjusted for 270 clusters in id)
    ---------------------------------------------------------------------------------------
                          |               Robust
     hard_final_Exact_new | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
    ----------------------+----------------------------------------------------------------
             csopresence1 |   .3049664   .1256368     2.43   0.015     .0587227      .55121
                 Modriatr |          0  (omitted)
             post_SFAS158 |  -.0068252    .384747    -0.02   0.986    -.7609154     .747265
         PENADJ_indicator |  -.0160293   .1407678    -0.11   0.909    -.2919292    .2598706
              Firm_Size_w |  -.1483298   .0811382    -1.83   0.068    -.3073578    .0106981
                    ROA_w |   2.188747   1.405676     1.56   0.119    -.5663282    4.943822
               Leverage_w |  -.7383755   .4308076    -1.71   0.087    -1.582743    .1059919
       Market_book_four_w |  -.0002983   .0091105    -0.03   0.974    -.0181546     .017558
        Non_pension_CFO_w |  -4.841646   1.890794    -2.56   0.010    -8.547535   -1.135757
                STD_CFO_w |   1.102136   3.069188     0.36   0.720    -4.913361    7.117633
     Board_Independence_w |   .0038131    .005846     0.65   0.514    -.0076448     .015271
              BoardSize_w |  -.0198617    .026763    -0.74   0.458    -.0723163    .0325928
       Gender_Diversity_w |  -.0043376   .0068699    -0.63   0.528    -.0178023    .0091271
            Fund_Status_w |   -3.88352   2.021851    -1.92   0.055    -7.846275    .0792343
          FUNDING_RATIO_w |  -.5684102   .4264107    -1.33   0.183     -1.40416    .2673395
             Platn_Size_w |   .0334232   .0666827     0.50   0.616    -.0972726    .1641189
            CSR_Committee |   .1016902   .1371256     0.74   0.458     -.167071    .3704513
    SustainabilityScore_w |   .0028631     .00359     0.80   0.425    -.0041731    .0098993
                          |
                     year |
                    2005  |          0  (empty)
                    2006  |          0  (empty)
                    2007  |  -.1937767   .6349589    -0.31   0.760    -1.438273     1.05072
                    2008  |   .3669977   .5631947     0.65   0.515    -.7368436    1.470839
                    2009  |   .5487587   .4103906     1.34   0.181     -.255592    1.353109
                    2010  |    .391326   .4232784     0.92   0.355    -.4382844    1.220936
                    2011  |   .0877705   .4469784     0.20   0.844     -.788291     .963832
                    2012  |   .4454293   .4192494     1.06   0.288    -.3762845    1.267143
                    2013  |   .3479672   .4203863     0.83   0.408    -.4759747    1.171909
                    2014  |   .4517313    .422942     1.07   0.285    -.3772198    1.280682
                    2015  |   .4870158    .426864     1.14   0.254    -.3496222    1.323654
                    2016  |   .2188491   .4397017     0.50   0.619    -.6429504    1.080649
                    2017  |   .3019857   .4428455     0.68   0.495    -.5659756    1.169947
                    2018  |   .6105535   .4361753     1.40   0.162    -.2443342    1.465441
                    2019  |   .2607304   .4637858     0.56   0.574     -.648273    1.169734
                    2020  |   .6196371   .4507377     1.37   0.169    -.2637925    1.503067
                    2021  |   .2225547   .4996484     0.45   0.656    -.7567382    1.201848
                    2022  |   .5439303   .5910644     0.92   0.357    -.6145346    1.702395
                          |
                    ff_12 |
                       2  |   .0279744   .4129966     0.07   0.946     -.781484    .8374329
                       3  |  -.1731902   .2217855    -0.78   0.435    -.6078817    .2615013
                       4  |  -.2119661   .4017845    -0.53   0.598    -.9994492     .575517
                       5  |  -.1133531   .2490367    -0.46   0.649    -.6014561    .3747499
                       6  |   .0049323   .2409315     0.02   0.984    -.4672847    .4771493
                       7  |   .4607551   .3931313     1.17   0.241     -.309768    1.231278
                       8  |   -.257131   .2631081    -0.98   0.328    -.7728133    .2585514
                       9  |   .5244454   .2298999     2.28   0.023     .0738498    .9750409
                      10  |  -.0693265   .2593176    -0.27   0.789    -.5775795    .4389266
                      11  |   .4559202   .2359059     1.93   0.053    -.0064468    .9182872
                      12  |  -.1601826   .2445231    -0.66   0.512    -.6394389    .3190738
                          |
                    _cons |  -.7197823   .7756739    -0.93   0.353    -2.240075    .8005107
    ---------------------------------------------------------------------------------------

  • #2
    Hussein:
    the only possible work-around is to change the specification of the right-hand side of the -probit- regression.
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Thanks Carlo for you advice

      Comment

      Working...
      X