Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • dtable Command & Correction for Multiple Testing

    Hi all -- I know Jeff Pitblado (StataCorp) is the resident expert on dtable here on the forums, so I'm hoping he might chime in (he's been super helpful in the past!)

    Is there anyway to use dtable AND account for multiple testing? I know pearson and regress are the primary workhorses for the testing, but I haven't yet found a way to incorporate a correction for multiple testing. I can always adjust the p-value thresholds, but I've had my physician researcher colleagues express confusion when previously employing that approach. I'd much rather adjust the p-values themselves to fall within the tradition "0.05/0.01/0.001" delineation of significance.

    Do you have any insight?

    Thanks,
    Kevin

  • #2
    dtable does not currently have any option/feature that adjusts p-values for multiple comparisons.

    At the time we were developing dtable we were not aware of anyone doing this. Can you provide an example and point out where/how you want the p-values to be adjusted for multiple comparisons?

    Comment


    • #3
      Sorry for the delay in getting back to you (I've been out of the country).

      See the example below:



      Code:
      * Example generated by -dataex-. For more info, type help dataex
      clear
      input int studyid byte gender float(age_cat race_ethnicity_sorted) byte(language religion payor) float(coi_overall_cat coi_edu_cat coi_social_cat coi_health_cat type_embryo grade_cat) byte num_sym float predispose_cat byte outpatient float delay
        1 2 0 3 1 1 1 40 80 20 20 3 . 0 0 0 0
        2 2 2 2 1 1 1 80 80 80 40 2 1 0 0 1 0
        3 2 0 2 1 1 1 80 80 80 60 3 . 0 0 1 0
        4 2 3 1 2 0 1 20 20 20 20 2 1 0 0 1 0
        5 2 1 3 1 1 2 80 80 80 40 2 1 0 0 0 0
        6 2 1 2 1 1 2 40 40 60 20 2 1 0 1 0 0
        7 2 1 2 1 0 1 60 80 60 40 2 1 0 0 1 0
        8 1 1 2 1 1 2 20 20 20 60 2 1 0 0 0 0
        9 2 3 2 1 0 1 60 60 40 60 2 1 1 1 1 0
       10 2 2 2 1 1 1 60 80 60 20 2 1 1 0 1 0
       11 1 2 3 1 1 1 60 60 60 20 2 1 0 1 1 0
       12 2 2 3 1 1 2 80 80 80 80 2 1 0 0 0 0
       13 1 1 1 2 0 1 60 60 60 40 2 2 1 0 0 0
       14 2 1 1 2 1 2 40 60 40 20 2 2 0 0 0 0
       15 2 0 2 1 1 2 80 80 80 60 2 1 0 0 1 0
       16 1 1 2 1 1 1 80 80 80 80 1 2 2 0 0 0
       17 2 1 2 1 1 2 80 80 80 60 2 2 0 0 0 0
       18 2 1 3 1 1 2 80 80 80 80 2 1 2 0 1 0
       19 1 0 3 1 1 1 60 80 60 40 1 2 1 0 0 0
       20 1 1 2 1 1 2 80 60 80 80 2 . 1 0 0 0
       21 2 3 1 2 1 2 40 20 40 60 2 1 2 0 0 0
       22 2 0 3 1 1 2 40 60 40 40 1 2 1 0 0 0
       23 2 2 1 1 1 2 80 80 80 40 3 2 2 0 0 0
       24 1 1 1 1 1 1 80 80 80 60 1 2 1 0 0 0
       25 2 1 1 1 0 1 20 60 20 20 1 2 3 0 0 0
       26 2 1 1 1 0 1 40 60 40 20 1 2 2 0 0 0
       27 2 3 1 1 1 2 80 80 80 60 3 1 1 0 0 0
       28 2 0 3 1 1 2 80 80 80 60 1 2 1 0 0 0
       29 2 3 2 1 0 2 40 40 60 20 2 1 3 0 0 0
       30 2 1 2 1 1 2 80 80 80 60 2 2 0 0 0 0
       31 1 2 2 2 1 2 20 40 40 20 2 2 2 0 0 0
       32 2 1 2 1 0 2 60 80 60 20 2 2 2 0 0 0
       33 1 1 3 1 1 1 80 80 60 40 2 2 3 0 0 0
       34 1 1 2 1 0 1 60 80 40 40 2 1 1 0 0 0
       35 2 1 2 1 0 2 60 60 60 20 3 2 1 0 0 0
       36 2 2 1 2 1 1 40 60 40 20 3 2 3 0 0 0
       37 1 2 1 1 1 2 20 40 40 20 2 2 1 0 0 0
       38 1 1 2 1 0 1 80 80 80 60 3 . 1 0 1 0
       39 2 1 2 1 1 1 80 80 60 60 1 2 2 0 0 0
       40 2 3 . 1 1 1 80 80 80 60 1 2 1 0 1 0
       41 1 1 1 1 1 2 20 20 20 20 3 2 1 0 0 0
       42 2 1 2 1 0 1 20  0 20 20 2 1 1 0 0 0
       43 1 1 1 1 0 1 40 60 40 20 1 2 3 0 0 0
       44 2 1 1 1 1 2 40 60 40  0 2 1 2 0 0 0
       45 2 3 1 1 1 2 40 40 60 20 1 2 3 0 0 0
       46 1 2 1 1 0 2 60 60 60 20 3 2 1 0 0 0
       47 2 1 1 2 0 1 40 60 40 20 1 2 2 0 0 0
       48 2 2 3 1 1 2 80 80 60 40 1 2 3 0 0 0
       49 1 1 1 1 1 1 40 60 40 20 1 2 1 0 0 0
       50 1 1 . 1 1 1  0 20  0 20 2 2 2 0 1 0
       51 1 1 3 1 0 1 60 60 60 20 2 2 1 0 0 0
       52 2 1 1 1 1 2 80 80 60 40 2 2 2 0 0 0
       53 1 2 1 1 1 2 60 80 60 40 2 2 2 0 0 0
       54 2 2 3 1 0 1 80 80 60 40 2 2 1 0 0 0
       55 2 1 2 1 1 1 80 80 80 80 3 . 1 1 1 0
       56 1 1 3 1 1 2 60 60 80 40 2 2 2 0 0 0
       57 1 1 3 1 1 2 80 80 80 40 2 2 1 0 0 0
       58 2 0 3 1 1 2 80 80 60 40 2 . 0 0 1 0
       59 2 1 1 1 0 1 80  . 60 60 1 2 1 0 0 0
       60 1 0 2 1 1 1 80 80 80 60 1 2 1 0 0 0
       61 1 1 2 1 0 1 80 80 80 60 2 2 2 0 0 0
       62 1 1 1 1 1 2 60 60 40 40 2 1 1 0 0 0
       63 2 1 1 2 0 1 80 80 80 40 2 2 1 0 0 0
       64 2 1 2 1 1 2 20 20 20 20 1 2 2 0 0 0
       65 1 1 1 2 1 1 20 40 40 20 2 1 3 0 0 0
       66 1 1 1 1 1 2 40 60 40 20 2 1 1 0 0 0
       67 1 1 1 1 1 2 40 20 40 20 1 2 2 0 0 0
       68 1 1 1 1 0 1 60 80 60 40 2 1 2 0 0 0
       69 2 3 2 1 0 2 60 60 60 60 2 1 1 0 0 0
       70 1 1 2 1 0 1 80 80 80 40 1 2 2 0 0 0
       71 1 2 2 1 1 2 80 80 80 80 2 1 1 0 0 0
       72 2 1 1 1 1 1 20 20 20  0 3 2 2 0 0 0
       73 1 1 1 2 1 1 60 60 60 40 1 2 3 0 0 0
       74 2 1 1 1 1 2 40 40 60 20 2 . 2 0 0 0
       75 2 2 3 1 1 1 20 60 20 20 2 . 1 0 1 0
       76 1 0 3 1 1 1 20 20 40  0 2 2 2 0 0 0
       77 2 1 3 1 1 1 40 80 40 20 2 . 1 0 0 0
       78 1 1 2 1 0 2 60 60 60 20 2 2 1 0 0 0
       79 2 2 3 1 0 1 60 60 60 20 2 2 2 0 0 0
       80 2 1 3 1 1 1 60 60 40 40 2 1 2 0 0 0
       81 1 2 1 2 0 1 20 20 20  0 1 2 1 0 0 0
       82 2 1 2 1 1 2 80 80 80 60 1 2 3 0 0 0
       83 1 1 1 1 1 2  0  0  0 20 2 1 2 0 0 0
       84 2 2 1 2 1 2 20  0 20  0 2 1 3 0 1 0
       85 2 2 1 2 1 1 40 20 40 20 1 2 3 0 0 0
       86 1 1 1 1 1 1 20  0 40 20 2 1 3 0 1 0
       87 2 3 2 1 0 2 80 80 80 60 3 1 1 0 1 0
       88 1 2 1 1 1 1 40 40 40 20 2 1 2 0 1 0
       89 1 1 1 1 0 1 80 80 80 40 3 2 2 0 1 0
       90 2 3 1 2 0 1 40 20 40 20 3 1 1 1 1 0
       91 2 3 2 1 0 2 60 80 60 20 3 . 2 0 1 0
       92 2 0 1 1 1 1 20 20 20  0 1 2 1 0 0 1
       93 2 1 1 1 1 1 40 40 60 20 1 2 3 0 0 1
       94 2 3 2 1 1 2 60 60 60 40 3 . 2 0 0 1
       95 2 2 2 1 0 1 80 80 80 40 1 2 2 0 0 1
       96 2 1 1 1 0 2 40 40 40 20 1 2 1 1 1 1
       97 2 1 1 1 1 1 80 80 80 40 1 2 1 0 0 1
       98 2 3 1 1 1 2 20 20 20  0 2 1 1 0 0 1
       99 2 1 2 1 1 1 40 20 40 20 2 1 2 0 0 1
      100 1 3 1 2 1 1 80 80 80 80 3 1 2 0 0 1
      end
      label values gender gender
      label def gender 1 "Female", modify
      label def gender 2 "Male", modify
      label values age_cat la_age
      label def la_age 0 "Infant (<2)", modify
      label def la_age 1 "Early Childhood (2-7)", modify
      label def la_age 2 "Late Childhood (8-13)", modify
      label def la_age 3 "Adolescence (14+)", modify
      label values race_ethnicity_sorted race_ethnicity_sorted
      label def race_ethnicity_sorted 1 "Hispanic", modify
      label def race_ethnicity_sorted 2 "Non-hispanic White", modify
      label def race_ethnicity_sorted 3 "Other", modify
      label values language language
      label def language 1 "English", modify
      label def language 2 "Spanish", modify
      label values religion la_yesno
      label values outpatient la_yesno
      label values predispose_cat la_yesno
      label def la_yesno 0 "No", modify
      label def la_yesno 1 "Yes", modify
      label values payor payor
      label def payor 1 "Private", modify
      label def payor 2 "Public", modify
      label values coi_overall_cat la_coi_cat
      label values coi_edu_cat la_coi_cat
      label values coi_social_cat la_coi_cat
      label values coi_health_cat la_coi_cat
      label def la_coi_cat 0 "Very Low", modify
      label def la_coi_cat 20 "Low", modify
      label def la_coi_cat 40 "Moderate", modify
      label def la_coi_cat 60 "High", modify
      label def la_coi_cat 80 "Very High", modify
      label values type_embryo la_type_embryo
      label def la_type_embryo 1 "Embryonal", modify
      label def la_type_embryo 2 "Glioma", modify
      label def la_type_embryo 3 "Other", modify
      label values grade_cat la_grade_cat
      label def la_grade_cat 1 "Low Grade", modify
      label def la_grade_cat 2 "High Grade", modify
      label values num_sym la_sym
      label def la_sym 0 "0", modify
      label def la_sym 1 "1", modify
      label def la_sym 2 "2", modify
      label def la_sym 3 "3+", modify
      label values delay la_delay
      label def la_delay 0 "Less than 30 Days", modify
      label def la_delay 1 "More than 30 days", modify


      And here is how I want to use dtable:

      Code:
      dtable     2.gender i.age_cat i.race_ethnicity_sorted i.language 1.religion i.payor i.(coi_overall_cat coi_edu_cat coi_social_cat coi_health_cat)    ///
                      i.type_embryo i.grade_cat i.num_sym 1.predispose_cat 1.outpatient, ///
                      by(delay, tests)    ///
                      nformat(%9.1fc p50 p25 p75) ///
                      title(Table 1. Sample Characteristics) titlestyle(font(,size(10)))    ///
                      notestyle(font(,size(6)))    //    Removed Notes section to account for the new note below.
      collect style cell, font(,size(8))        
      collect style header gender religion predispose_cat outpatient survival, level(hide)
      collect style putdocx, layout(autofitc) halign(center)
      collect preview

      Note that this is a subset of the data, and with the entire dataset there are multiple tests that are significant -- hence my desire to account for multiple testing.

      Thanks!

      - Kevin



      Comment


      • #4
        Hey there Jeff Pitblado (StataCorp). Is this helpful?

        Comment


        • #5
          Do you want to adjust the p-values across all the variables in the table?

          Comment


          • #6
            That would be the idea; I know Bonferonni is the most conservative, but that's probably what I'd be using most the time.

            Comment


            • #7
              Hi Jeff Pitblado (StataCorp) -- just following up on this discussion. Thanks!

              Comment


              • #8
                Hi Kevin. I noted your request, thanks for the example and answer to my recent question.

                Comment

                Working...
                X